Sequential detection of the order of integration for pth-order autoregressive model

K. Nagai, K. Hitomi, Y. Nishiyama, J. Tao Yokohama Nat. Univ., Kyoto Inst. Tech., Kyoto Univ., Yokohama Nat. Univ.

Introduction

For a pth-order autoregressive (AR(p)) model, we propose a sequential detection procedure of the order d of integration (I(d)). We introduce three stopping times and two t-statistics. Simulation studies are conducted for sequential detection of order d = 0, 1, 2 of integration for AR(3) models to verify our theory.

Model, stopping times and t-statistics

Suppose we observe the following AR(p) process $\{x_n\}$ sequentially

$$(1 - \alpha_1 L)(1 - \alpha_2 L) \cdots (1 - \alpha_p L)x_n = \epsilon_n, \quad n = 1, \dots,$$

$$(1)$$

where L is the lag operator and $\epsilon_n \sim i.i.d.$ $(0, \sigma^2)$. Without loss of generality, we assume $|\alpha_i| \leq |\alpha_2| \leq |\alpha_1| \leq 1$ (i = 3, ..., p). We define three stopping times

$$\tau_k = \inf \left\{ N : \frac{\hat{\Psi}_k^2(1)}{cs^2} \sum_{t=p+1}^N x_{t-1}^2 \ge 1 \right\} \ (k=1,2), \tau_{\Delta} = \inf \left\{ N : \frac{\hat{\Psi}_2^2(1)}{cs^2} \sum_{t=p+1}^N \Delta x_{t-1}^2 \ge 1 \right\}, \quad (2)$$

where s^2 is a consistent estimator of σ^2 and $\hat{\Psi}_1(1)$, $\hat{\Psi}_2(1)$ are consistent estimators of $\Psi_1(1) = \Pi_{i=2,...p}(1-\alpha_i)$ and $\Psi_2(1) = \Pi_{i=3,...p}(1-\alpha_i)$ respectively. Using stochastic calculus in continuous time, as $c \to \infty$,

$$\frac{\tau_1}{\sqrt{c}} \Rightarrow U_1 = \inf\left\{t : \int_0^t W_u^2 du = 1\right\} \quad \text{if } \{x_n\} \text{ is an } I(1) \text{ process}$$
 (3)

$$\frac{\tau_2}{c^{1/4}} \Rightarrow V_1 = \inf\left\{t : \int_0^t F_u^2 du = 1\right\} \quad \text{if } \{x_n\} \text{ is an } I(2) \text{ process}$$
 (4)

where W_t is a standard Brownian motion and $F_t = \int_0^t W_u du$. In our companion paper, we have known the distribution of U_1 in (3) and V_1 in (4). The two test statistics is defined as

$$J = \frac{\hat{\Psi}_1(1)}{\sqrt{c}s_N^2} \sum_{n=4}^{\tau_1} x_{n-1} \left\{ \hat{\Psi}_1(L) \Delta x_n \right\} \quad , J_{\Delta} = \frac{\hat{\Psi}_2(1)}{\sqrt{c}s_N^2} \sum_{n=4}^{\tau_{\Delta}} \Delta x_{n-1} \left\{ \hat{\Psi}_2(L) \Delta^2 x_n \right\}.$$
 (5)

Detection Method

Let u_q, v_q and z_q be the $q \times 100$ percentile of U_1, V_1 and the standard normal distribution. To compute the value of v_q , we use the results in Tanaka(2017). We start from I(2). Let $\alpha = 0.01$ for example.

- 1. If $\tau_2/c^{1/4} < v_{1-\alpha}$, reject I(0). Then we use J_{Δ} for testing I(1) and I(2)
 - (a) If $J_{\Delta} < z_{\alpha}$, we choose I(1). (b) If $J_{\Delta} \geq z_{\alpha}$, we choose I(2).
- 2. If $\tau_2/c^{1/4} \ge v_{1-\alpha}$, we reject I(2). Then we use τ_1/\sqrt{c} for testing I(0) and I(1).
 - (a) If $\tau_1/\sqrt{c} > u_{1-\alpha}$, we choose I(0).
 - (b) If $\tau_1/\sqrt{c} \le u_{1-\alpha}$, then we use J for testing I(0) and I(1). If $J < z_{\alpha}$, select I(0). If $J \ge z_{\alpha}$, select I(1).

Reference

1. Tanaka. K.(2017). Time series analysis: Nonstationary and Noninvertible Distribution Theory, 2nd edition. Wiley