
A Comparison of Penalized and Penalty-Free  
Procedures for Sparse Factor Analysis 

Kohei Adachi, Osaka University, Japan 

1. Latent Variable Factor Analysis (LVFA) and Matrix Decomposition FA (MDFA)  
Let x (p  1) denote the random vector containing observed variables with E[x] being the zero vector. In the 

traditional formulation of latent variable factor analysis (LVFA), the common and unique factor score vectors, 
which we express as f (m  1) and u (p  1), respectively, are treated as latent random vectors: FA is modeled as 
x = f + u with m < p. Here,  (p  m) contains factor loadings and  (p  p) is diagonal (Adachi, 2019).   

On the other hand, matrix decomposition FA (MDFA) is formulated with the common and unique factor 
scores treated as the fixed parameters contained in F (n  m) and U (n  p), respectively: FA is modeled as X = 
F + U + E for n  p column centered data matrix X, with E containing errors (Adachi, 2019). 

Recently, sparse FA (SFA) procedures have been developed for estimating sparse . They can be classified 
into two types. One of them is formulated by incorporating a penalty function in LVFA. We call this approach 
penalized sparse LVFA (PS-LVFA). The other is based on MDFA and penalty-free (i.e., does not use a penalty 
function). It is referred to as cardinality-constrained MDFA (CC-MDFA), as the un-sparsity or cardinality of  is 
directly constrained. In this paper, PS-LVFA and CC-MDFA are reviewed in the next sections, and then 
compared empirically and in usability. 

2. Penalized Sparse LVFA (PS-LVFA) 
   Hirose and Yamamoto (2014) have proposed a PS-LVFA procedure, in which the penalized log likelihood 

l(,,) = 2
n log(+2)1V 2

n tr(+2)1V  nMC(w, u)                  (1) 

following from the normality for f and u, is maximized over ,  and a factor correlation matrix  (m  m) with 
the EM algorithm. Here, MC(w, u) is the penalty function based on MC+ with w and u the tuning parameters 
specifying MC(w, u). As PS-LVFA, we consider the above procedure with only the algorithm for  in the 
M-step differing from the original one:  is reparameterized as diag(TT)1/2TTdiag(TT)1/2 and a simple 
gradient method is used for updating , with the differential of the objective function w.r.t. T given numerically. 

3. Cardinality-Constrained MDFA (CC-MDFA) 
   In Adachi and Trendafilov's (2015) CC-MDFA, least squared function  

f(F, U, , ) = X  (F + U)2 = X  (FA + U)2 + n  A2                  (2) 

is minimized over F, U, , and  subject to n1FF = Im, n1UU = Ip, FU being the zero matrix, and the 
cardinality of  equaling c (a specified integer), with A = n1XF. The constraint n1FF = Im allows the last 
identity in (2) to hold. It shows that the update of  can be attained by the constrained minimization of a simple 
function   A2. This is a trick in CC-MDFA, but follows from n1FF = Im implying that the common factors 
are comnstrained to be mutually uncorrelated:  cannot be estimated. 

4. Comparison of PS-LVFA and CC-MDFA 
   Suitable values of w and u in PS-LVFA can be selected using BIC. Though CC-MDFA is not based on 
maximum likelihood (ML), the BIC-based selection of c is feasible, using the ML-FA solution with the loadings 
estimated as zeros in CC-MDFA being constrained to be zeros. Through such tuning parameter selection, 
PS-LVFA and CC-MDFA are found to provide similar solutions for a number of data sets. 
   PS-LVFA is superior in that  can be estimated. On the other hand, CC-MDFA is superior in that its tuning 
parameter c is restricted to an integer within a certain interval, thus the suitability of all candidates for c can be 
assessed. Such an assessment is impossible in PS-LVFA, since its tuning parameters w and u take real values. 
Thus, only some representative w and u values can be evaluated, and further the combination of the two 
parameters must also be considered which is time-consuming. 
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