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1. Latent Variable Factor Analysis (LVFA) and Matrix Decomposition FA (MDFA)  
Let x (p  1) denote the random vector containing observed variables with E[x] being the zero vector. In the 

traditional formulation of latent variable factor analysis (LVFA), the common and unique factor score vectors, 
which we express as f (m  1) and u (p  1), respectively, are treated as latent random vectors: FA is modeled as 
x = f + u with m < p. Here,  (p  m) contains factor loadings and  (p  p) is diagonal (Adachi, 2019).   

On the other hand, matrix decomposition FA (MDFA) is formulated with the common and unique factor 
scores treated as the fixed parameters contained in F (n  m) and U (n  p), respectively: FA is modeled as X = 
F + U + E for n  p column centered data matrix X, with E containing errors (Adachi, 2019). 

Recently, sparse FA (SFA) procedures have been developed for estimating sparse . They can be classified 
into two types. One of them is formulated by incorporating a penalty function in LVFA. We call this approach 
penalized sparse LVFA (PS-LVFA). The other is based on MDFA and penalty-free (i.e., does not use a penalty 
function). It is referred to as cardinality-constrained MDFA (CC-MDFA), as the un-sparsity or cardinality of  is 
directly constrained. In this paper, PS-LVFA and CC-MDFA are reviewed in the next sections, and then 
compared empirically and in usability. 

2. Penalized Sparse LVFA (PS-LVFA) 
   Hirose and Yamamoto (2014) have proposed a PS-LVFA procedure, in which the penalized log likelihood 

l(,,) = 2
n log(+2)1V 2

n tr(+2)1V  nMC(w, u)                  (1) 

following from the normality for f and u, is maximized over ,  and a factor correlation matrix  (m  m) with 
the EM algorithm. Here, MC(w, u) is the penalty function based on MC+ with w and u the tuning parameters 
specifying MC(w, u). As PS-LVFA, we consider the above procedure with only the algorithm for  in the 
M-step differing from the original one:  is reparameterized as diag(TT)1/2TTdiag(TT)1/2 and a simple 
gradient method is used for updating , with the differential of the objective function w.r.t. T given numerically. 

3. Cardinality-Constrained MDFA (CC-MDFA) 
   In Adachi and Trendafilov's (2015) CC-MDFA, least squared function  

f(F, U, , ) = X  (F + U)2 = X  (FA + U)2 + n  A2                  (2) 

is minimized over F, U, , and  subject to n1FF = Im, n1UU = Ip, FU being the zero matrix, and the 
cardinality of  equaling c (a specified integer), with A = n1XF. The constraint n1FF = Im allows the last 
identity in (2) to hold. It shows that the update of  can be attained by the constrained minimization of a simple 
function   A2. This is a trick in CC-MDFA, but follows from n1FF = Im implying that the common factors 
are comnstrained to be mutually uncorrelated:  cannot be estimated. 

4. Comparison of PS-LVFA and CC-MDFA 
   Suitable values of w and u in PS-LVFA can be selected using BIC. Though CC-MDFA is not based on 
maximum likelihood (ML), the BIC-based selection of c is feasible, using the ML-FA solution with the loadings 
estimated as zeros in CC-MDFA being constrained to be zeros. Through such tuning parameter selection, 
PS-LVFA and CC-MDFA are found to provide similar solutions for a number of data sets. 
   PS-LVFA is superior in that  can be estimated. On the other hand, CC-MDFA is superior in that its tuning 
parameter c is restricted to an integer within a certain interval, thus the suitability of all candidates for c can be 
assessed. Such an assessment is impossible in PS-LVFA, since its tuning parameters w and u take real values. 
Thus, only some representative w and u values can be evaluated, and further the combination of the two 
parameters must also be considered which is time-consuming. 
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