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Abstract

This paper proposes a new test for a large set of zero restrictions in regression models based

on a seemingly overlooked, but simple, dimension reduction technique. The procedure in-

volves multiple parsimonious regression models where key regressors are split across simple

regressions. Each parsimonious regression model has one key regressor and other regressors

not associated with the null hypothesis. The test is based on the maximum of the squared

parameters of the key regressors. Parsimony ensures sharper estimates and therefore im-

proves power in small sample. We present the general theory of our test and focus on mixed

frequency Granger causality as a prominent application involving many zero restrictions.
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1 Introduction

We propose a new test designed for a large set of zero restrictions in regression models. Suppose

that the underlying data generating process is yt = z′
ta+ x′

tb+ ϵt, where zt is assumed to have

a small dimension p while xt may have a large but finite dimension h. We want to test the null

hypothesis H0 : b = 0 against a general alternative hypothesis H1 : b ̸= 0.

A classical approach for testing H0 relies on what we call a full regression model yt = z′
tα +

x′
tβ + ut and a Wald test. This approach may result in imprecise inference when b has a large
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dimension relative to sample size n. The asymptotic χ2-test may suffer from size distortions in

small sample due to parameter proliferation. A bootstrap method can be employed to improve

empirical size, but this generally results in the size-corrected test having low power.

To circumvent the issue of parameter proliferation, we propose to split each of the key

regressors xt = [x1t, . . . , xht]
′ across separate regression models. This approach leads to what we

call parsimonious regression models: yt = z′
tαi+βixit+uit for i = 1, . . . , h. The ith parsimonious

regression model has zt and the ith element of xt only, so that parameter proliferation is not an

issue. We then compute a max test statistic: T̂n = max{(
√
nβ̂n1)

2, . . . , (
√
nβ̂nh)

2}.
The asymptotic distribution of T̂n is non-standard under H0 : b = 0, but it is easy to approx-

imate a p-value by drawing from the asymptotic distribution. We will prove that, under H1 : b

̸= 0, at least one of {β̂n1, . . . , β̂nh} has a nonzero probability limit under fairly weak conditions.

This result ensures that, although the proposed approach does not deliver a consistent estimator

of b, we can reject the null hypothesis with probability approaching one for any direction b ̸= 0

under the alternative hypothesis. The max test is therefore a consistent test.

After presenting the general theory of the max test, we focus on Mixed Data Sampling

(MIDAS) Granger causality as a prominent application involving many zero restrictions. Stan-

dard VAR models are designed for single-frequency data, and causality tests based on those

models may produce misleading results of spurious (non-)causality. To alleviate the adverse im-

pact of temporal aggregation, Ghysels, Hill, and Motegi (2016) develop Granger causality tests

that explicitly take advantage of mixed frequency data. They extend Dufour, Pelletier, and

Renault’s (2006) VAR-based causality test, exploiting Ghysels’ (2016) mixed frequency vector

autoregressive (MF-VAR) models.

A challenge not addressed by Ghysels, Hill, and Motegi (2016) is parameter proliferation

in MF-VAR models which has a negative impact on the finite sample performance of their

tests. When the dimension of MF-VAR model is large, an asymptotic Wald test results in size

distortions while a bootstrapped Wald test features low size-corrected power. The max test

proposed in the present paper is a useful solution to such a large-dimension problem.

We show via Monte Carlo simulations that the proposed max test dominates the existing

Wald test. As an empirical application, we analyze Granger causality from a weekly interest

rate spread to quarterly real GDP growth in the United States. The proposed max test yields

more intuitive empirical results than the existing Wald test.

The remainder of the paper is organized as follows. In Section 2, we present general theory

of the parsimonious regression models and max tests. In Section 3, we focus on mixed fre-

quency Granger causality tests as a specific application. In Section 4, we perform Monte Carlo

simulations. The empirical application is presented in Section 5.

2 General theory

Consider a DGP in which {yt} depends linearly on zt = [z1t, . . . , zpt]
′ and xt = [x1t, . . . , xht]

′.

Define the σ-field Ft = σ(Yτ : τ ≤ t+1) with all variables Yt = [yt−1,X
′
t]
′, where Xt = [z′

t,x
′
t]
′.
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Thus, Ft−1 contains information on {yt−1, yt−2, ...} and the regressors {(zt,xt), (zt−1,xt−1), . . . }.

Assumption 2.1. The true DGP is

yt =

p∑
k=1

akzkt +

h∑
i=1

bixit + ϵt. (2.1)

The error {ϵt} is a stationary martingale difference sequence (mds) with respect to the increasing

σ-field filtration Ft ⊂ Ft+1, and σ2 ≡ E[ϵ2t ] > 0.

Let n be a sample size, and define an n× (p+ h) matrix of regressors X = [X1, . . . ,Xn]
′.

Assumption 2.2. X is of full column rank p+ h almost surely.

Assumption 2.3. {Xt, ϵt} are strictly stationary and ergodic. Xt is square integrable.

Using standard vector notations, e.g., a = [a1, . . . , ap]
′, DGP (2.1) is rewritten as yt =

z′
ta + x′

tb + ϵt, where {zt} are auxiliary regressors whose coefficients are not our main target.

The number of the auxiliary regressors, p, is assumed to be relatively small. We want to test

for the zero restrictions with respect to main regressors xt, i.e., H0 : b = 0. The number of zero

restrictions, h, is assumed to be finite but potentially large relative to sample size n.

A classical approach of testing for H0 : b = 0 is the Wald test based on what we call a full

regression model :

yt =

p∑
k=1

αkzkt +

h∑
i=1

βixit + ut. (2.2)

Given model (2.2), it is straightforward to compute a Wald statistic with respect to H0 : b = 0.

The statistic has an asymptotic χ2 distribution with h degrees of freedom under Assumptions

2.1-2.3. A potential problem of this approach is that the asymptotic approximation may be poor

when there are many zero restrictions relative to sample size. A parametric or wild bootstrap

can be used to control for the size of the test, but this typically leads to low size-corrected power.

It is therefore of use to propose a new test that achieves a sharper size and higher power.

We propose parsimonious regression models:

yt =

p∑
k=1

αkizkt + βixit + uit, i = 1, . . . , h. (2.3)

A crucial difference between the full regression model (2.2) and the parsimonious regression

models (2.3) is that, in the latter, there are h equations and the key regressor xit along with the

auxiliary regressors {z1t, . . . , zpt} appear in the ith equation. The parameters {α1i, . . . , αpi} may

differ across the equations i = 1, . . . , h, and unless the null hypothesis is true, they are generally

not equal to the true values {a1, . . . , ap}. We run least squares for each parsimonious regression

model to get {β̂n1, . . . , β̂nh}. Then we formulate a max test statistic

T̂n = max
{
(
√
nβ̂n1)

2, . . . , (
√
nβ̂nh)

2
}
. (2.4)
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Equations (2.3) and (2.4) form a core part of our approach. The number of regressors in each

parsimonious regression model is p+ 1, which is much smaller than p+ h in the full regression

model. As a result, the precision of β̂ni improves toward its probability limit β∗
i = plimn→∞β̂ni

for each i.

2.1 Asymptotic theory under the null hypothesis

We derive the asymptotic distribution of T̂n in (2.4) underH0 : b = 0. Rewrite each parsimonious

regression model (2.3) as yt = X ′
itθi + uit for i = 1, . . . , h, where Xit = [z1t, . . . , zpt, xit]

′ and

θi = [α′
i, βi]

′ = [α1i, . . . , αpi, βi]
′. Stack all parameters across the h models as θ = [θ′

1, . . . ,θ
′
h]

′.

Define a selection matrix R that selects β = [β1, . . . , βh]
′ from θ. R is an h× (p+ 1)h full row

rank matrix such that β = Rθ.

Theorem 2.1. Under H0 : b = 0, we have that T̂n
d→ max{N 2

1 , . . . ,N 2
h} as n → ∞, where

N = [N1, . . . ,Nh]
′ is distributed as N(0,V ) with covariance matrix V ≡ RSR′ ∈ Rh×h, where

S = [Σij ], Σij = Γ−1
ii ΛijΓ

−1
jj , Γij = E[XitX

′
jt], and Λij = E[ϵ2tXitX

′
jt] for i, j ∈ {1, . . . , h}.

2.2 Simulated p-value

Let V̂n be a consistent estimator for V , and draw M samples of vectors {N (1), . . . ,N (M)} inde-

pendently from N(0, V̂n). Compute artificial test statistics T̂ (j)
n = max{(N (j)

1 )2, . . . , (N (j)
h )2} for

j = 1, . . . ,M. An asymptotic p-value approximation for T̂n is p̂n,M = (1/M)
∑M

j=1 I(T̂
(j)
n > T̂n),

where I(A) is the indicator function that equals 1 if A occurs and 0 otherwise. Since N (j)

are i.i.d. over j, and M can be made arbitrarily large, p̂n,M can be made arbitrarily close to

P (T̂ (1)
n > T̂n). The proposed max test is to reject H0 at level α when p̂n,Mn < α and to accept

H0 when p̂n,Mn ≥ α, where {Mn}n≥1 is a sequence of positive integers that satisfies Mn → ∞.

Define the max test limit distribution under H0 as F 0(c) = P (max1≤i≤h(N
(1)
i )2 ≤ c). The

asymptotic p-value is F̄ 0(T̂n) ≡ 1 − F 0(T̂n) = P (max1≤i≤h(N
(1)
i )2 ≥ T̂n). We have the following

link between the p-value approximation P (T̂ (1)
n > T̂n) and the asymptotic p-value for T̂n.

Theorem 2.2. Let {Mn}n≥1 be a sequence of positive integers, Mn → ∞. Under Assumptions

2.1-2.3 P (T̂ (1)
n > T̂n) = F̄ 0(T̂n) + op(1), hence p̂n,Mn = F̄ 0(T̂n) + op(1). Therefore under H0,

P (p̂n,Mn < α) → α for any α ∈ (0, 1).

A consistent estimator V̂n is computed as follows. Run least squares for each parsimo-

nious regression model to get θ̂ni = [α̂′
ni, β̂ni]

′ and residuals ûit = yt − X ′
itθ̂ni. Define Γ̂ij =

(1/n)
∑n

t=1XitX
′
jt, Λ̂ij = (1/n)

∑n
t=1 û

2
itXitX

′
jt, Σ̂ij = Γ̂−1

ii Λ̂ijΓ̂
−1
jj , Ŝ = [Σ̂ij ]i,j , and V̂n =

RŜR′.

Theorem 2.3. Under Assumptions 2.1-2.3, V̂n
p→ V̄ where V̄ is some matrix that satisfies

||V̄ || < ∞. Specifically, V̄ = V ≡ RSR′ under H0, and under H1 it follows RS∗R′ where

S∗ = [Γ−1
ii Λ∗

ijΓ
−1
jj ]i,j .
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2.3 Limits under the alternative hypothesis

Under H1 : b ̸= 0, β̂ni in general does not converge in probability to the true value bi due to

omitted regressors. Let β∗
i = plimn→∞β̂ni be the pseudo-true value of βi. The same notation

applies to α∗
i and θ∗

i = [α∗′
i , β

∗
i ]

′. Let β̂n = [β̂n1, . . . , β̂nh]
′ and β∗ = [β∗

1 , . . . , β
∗
h]

′.

Theorem 2.4. Let Assumptions 2.1-2.3 hold. Let Γii = E[XitX
′
it] ∈ R(p+1)×(p+1) and Ci =

E[Xitx
′
t] ∈ R(p+1)×h. Then, θ̂n

p→ θ∗ = [θ∗′
1 , . . . ,θ

∗′
h ]

′, where

θ∗
i =


α∗
1i

...

α∗
pi

β∗
i

 =


a1
...

ap

0

+ Γ−1
ii Cib, i = 1, . . . , h. (2.5)

Further, β̂n
p→ β∗ = Rθ∗ by construction.

Theorem 2.4 provides useful insights on the relationship between the underlying coefficient b

and the pseudo-true value β∗. First, it is clear from (2.5) that β∗ = 0 whenever b = 0. This is an

intuitive result since each parsimonious regression model is correctly specified under H0 : b = 0.

Second, as the next theorem proves, b = 0 whenever β∗ = 0. This is a key result that allows us

to identify the null and alternative hypotheses exactly. Of course, our approach cannot identify

all of {b1, . . . , bh} under H1. We can, however, identify that at least one of {b1, . . . , bh} must be

non-zero, which is sufficient for rejecting H0 : b = 0.

Theorem 2.5. Let Assumptions 2.1-2.3 hold. Then β∗ = 0 implies b = 0, hence β∗ = 0 if and

only if b = 0. Therefore β̂n
p→ 0 if and only if b = 0.

Theorems 2.1-2.5 together imply the max test statistic has its intended limit properties under

either hypothesis. First, (2.4) indicates that T̂n
p→ ∞ at rate n if and only if β∗ ̸= 0, and by

Theorems 2.4 and 2.5 β̂n
p→ β∗ ̸= 0 under H1 : b ̸= 0. In conjunction with Theorem 2.2, the

consistency of the max test follows.

Theorem 2.6. Let Assumptions 2.1-2.3 hold, then T̂n
p→ ∞ at rate n and therefore P (p̂n,Mn <

α) → 1 for any α ∈ (0, 1) if and only if H1 : b ̸= 0 is true. In particular, H1 : b ̸= 0 is true if

and only if T̂n/n
p→ max

{
(β∗

1)
2, . . . , (β∗

h)
2
}
> 0.

3 Mixed frequency Granger causality

In this section, we discuss testing for Granger causality between bivariate mixed frequency time

series as a prominent example involving a large set of zero restrictions. We restrict ourselves

to the bivariate case where we have a high frequency variable xH and a low frequency variable

xL. Let m denote the ratio of sampling frequencies, i.e. the number of high frequency time

periods in each low frequency time period τ ∈ Z. A K × 1 mixed frequency vector is defined as

X(τ) = [xH(τ, 1), . . . , xH(τ,m), xL(τ)]
′, where K = m+ 1 and xH(τ, j) is the realization of xH
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at the j-th high frequency time period within a low frequency time period τ . Define the σ-field

Fτ ≡ σ(X(τ ′) : τ ′ ≤ τ). We assume that E[X(τ)|Fτ−1] has a version that is almost surely linear

in {X(τ − 1), . . . ,X(τ − p)} for some finite p ≥ 1.

Assumption 3.1. X(τ) follows MF-VAR(p) for finite p ≥ 1:
xH(τ, 1)

...

xH(τ,m)

xL(τ)


︸ ︷︷ ︸

≡X(τ)

=

p∑
k=1


d11,k . . . d1m,k c(k−1)m+1

...
. . .

...
...

dm1,k . . . dmm,k ckm

bkm . . . b(k−1)m+1 ak


︸ ︷︷ ︸

≡Ak


xH(τ − k, 1)

...

xH(τ − k,m)

xL(τ − k)


︸ ︷︷ ︸

≡X(τ−k)

+


ϵH(τ, 1)

...

ϵH(τ,m)

ϵL(τ)


︸ ︷︷ ︸

≡ϵ(τ)

(3.1)

or compactly X(τ) =
∑p

k=1AkX(τ − k) + ϵ(τ). The error {ϵ(τ)} is a strictly stationary

martingale difference sequence (mds) with respect to increasing Fτ ⊂ Fτ+1, with a positive

definite covariance matrix E[ϵ(τ)ϵ(τ)′].

Assumption 3.2. All roots of the polynomial det(IK −
∑p

k=1Akz
k) = 0 lie outside the unit

circle, where det(·) is the determinant.

Assumption 3.3. X(τ) and ϵ(τ) are ergodic.

Pick the last row of the entire system (3.1):

xL(τ) =

p∑
k=1

akxL(τ − k) +

pm∑
i=1

bixH(τ − 1,m+ 1− i) + ϵL(τ), ϵL(τ)
mds∼ (0, σ2

L), σ2
L > 0. (3.2)

xH does not Granger cause xL given the mixed frequency information set Fτ = σ(X(τ ′) : τ ′ ≤ τ)

if and only if H0 : b1 = · · · = bpm = 0. The number of zero restrictions, pm, may be very large

in some applications. Running parsimonious regression models and the max test is our proposed

solution to the parameter proliferation arising from a large pm.

There is a clear correspondence between the general linear DGP (2.1) and the mixed fre-

quency DGP (3.2). The regressand yt is xL(τ); common regressors {z1t, . . . , zpt} are identi-

cally the low frequency lags {xL(τ − 1), . . . , xL(τ − p)}; the main regressors split across par-

simonious regression models {x1t, . . . , xht} are the high frequency lags {xH(τ − 1,m + 1 −
1), . . . , xH(τ − 1,m + 1 − pm)}. The parsimonious regression models are therefore written as

xL(τ) =
∑p

k=1 αk,ixL(τ − k)+βixH(τ − 1,m+1− i)+uL,i(τ) with i = 1, . . . , pm. Assumptions

3.1-3.3 imply Assumptions 2.1-2.3. Thus, under Assumptions 3.1-3.3, Theorems 2.1-2.6 carry

over to the max test for high-to-low causality.

4 Monte Carlo simulations

In this section, we perform Monte Carlo simulations and compare the finite sample performance

of the max tests and Wald tests. In the present version of the paper, we focus on benchmark

scenarios that include cross-section and single-frequency time series data. See the full version of

the paper for more simulation results related with MIDAS scenarios.
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4.1 Simulation design

Consider a DGP that yt = x′
tb + ϵt with ϵt

i.i.d.∼ N(0, 1). For simplicity, we do not include any

common regressor zt (i.e. p = 0) and only include key regressors xt. The dimension of xt is

h ∈ {10, 100, 200}, and sample size is n ∈ {10h, 50h}. Assume that xt
i.i.d.∼ N(0,Γ), where the

diagonal elements of Γ are all equal to 1 and the off-diagonal elements are all equal to ρ = 0.3.

We consider two patterns for the true coefficients b = [b1, . . . , bh]
′:

DGP-1 bi = 0 for all i ∈ {1, . . . , h}.

DGP-2 bi = I(i < 1
10h)×

10
20h for all i ∈ {1, . . . , h}.

DGP-1 is prepared for investigating the empirical size of the max and Wald tests. Nonzero

coefficients are put on the first 10% of the entire regressors under DGP-2, and the magnitude

of causality sums up to
∑h

i=1 bi = 1/20.

We run parsimonious regression models yt = βixit+uit for i = 1, . . . , h, and compute the max

test statistic T̂n = max{(
√
nβ̂n1)

2, . . . , (
√
nβ̂nh)

2}. To compute a p-value, we draw M = 5000

samples from the asymptotic distribution under H0 : b = 0.

For comparison, we also run a full regression model yt = x′
tβ+ut and perform the asymptotic

and bootstrapped Wald tests. The asymptotic Wald test is a well-known χ2-test with degrees of

freedom h. For the bootstrapped test, generate B = 1000 bootstrap samples based on Gonçalves

and Kilian’s (2004) recursive-design wild bootstrap with standard normal innovations.

For each test, we draw J = 1000 Monte Carlo samples and compute rejection frequencies

with respect to nominal size α = 0.05.

4.2 Simulation results

See Table 1 for rejection frequencies. Focusing on DGP-1, the asymptotic Wald test suffers from

severe size distortions. See, for example, the case with (h, n) = (200, 2000), where the empirical

size of the asymptotic Wald test is 0.320. The max test and the bootstrapped Wald test are

correctly sized for all cases.

Focusing on DGP-2, we observe that the max test dominates the bootstrapped Wald test in

terms of empirical power. The empirical power of the max test is sometimes more than three

times as high as the empirical power of the Wald test. For (h, n) = (100, 1000), the empirical

power is 0.833 for the max test and 0.258 for the Wald test.

An intuitive explanation for the remarkably high power of the max test is as follows. Per-

forming the Wald test requires the computation of Γ̂ = (1/n)
∑n

t=1 xtx
′
t. The resulting Γ̂ is

more and more an imprecise estimator for Γ as the dimension h gets larger. The bootstrapped

Wald test tends to lose finite sample power in such a case. The max test, instead, bypasses the

computation of Γ̂ since it only requires the computation of Γ̂ii = (1/n)
∑n

t=1 x
2
it for i = 1, . . . , h.

Since Γ̂ii has a much smaller dimension than Γ̂, the accuracy of estimation improves consid-

erably. Hence the max test keeps high power when the dimension h is relatively large. Large

dimensionality is indeed an issue in many economic applications, and the max test resolves it.
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Table 1: Rejection frequencies after Monte Carlo experiments

DGP-1: yt =
∑h

i=1 bixit + ϵt with bi = 0

h = 10 h = 100 h = 200

n = 100 n = 500 n = 1000 n = 5000 n = 2000 n = 10000

Max .031 .051 .046 .054 .047 .033

Wald (asy) .101 .052 .210 .085 .320 .083

Wald (boot) .066 .050 .043 .058 .062 .061

DGP-2: yt =
∑h

i=1 bixit + ϵt with bi = I(i < 1
10
h)× 10

5h

h = 10 h = 100 h = 200

n = 100 n = 500 n = 1000 n = 5000 n = 2000 n = 10000

Max .232 .949 .833 1.000 .992 1.000

Wald (asy) .320 .879 .537 0.994 .748 1.000

Wald (boot) .235 .877 .258 0.991 .368 1.000

5 Empirical application

We test for Granger causality from a weekly term spread (i.e. difference between long-term and

short-term interest rates) to quarterly real GDP growth in the United States. We use seasonally-

adjusted quarterly real GDP growth as a business cycle measure. In order to remove potential

seasonal effects remaining after seasonal adjustment, we use annual growth (i.e. log xL(τ) −
log xL(τ − 4)). The short and long term interest rates used for the term spread are respectively

the effective federal funds (FF) rate and 10-year Treasury constant maturity rate. We aggregate

each daily series into weekly series by picking the last observation in each week. The sample

period covers January 5, 1962 to December 31, 2013, which contains 2,736 weeks or 208 quarters.

The number of weeks contained in each quarter τ , denoted by m(τ), is not constant. While

the max test can be applied with time-varying m(τ), we simplify the analysis by taking a sample

average at the end of each quarter, resulting in the following modified term spread {x∗H(τ, i)}12i=1:

x∗H(τ, i) =

xH(τ, i) for i = 1, . . . , 11,

1
m(τ)−11

∑m(τ)
k=12 xH(τ, k) for i = 12.

This modification gives us n = 208 quarters, m = 12, and T = m× n = 2, 496 weeks.

5.1 Models and tests

We perform a rolling window analysis to observe a dynamic evolution of Granger causality from

term spread to GDP. We set a window size to be 80 quarters (i.e. 20 years) so that there are

129 windows in total. The first subsample covers the first quarter of 1962 through the fourth

quarter of 1981 (written as 1962:I-1981:IV), the second one covers 1962:II-1982:I, and the last

one covers 1994:I-2013:IV.
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A full regression model with mixed frequency (MF) data is specified as

xL(τ) = α0 +

2∑
k=1

αkxL(τ − k) +

24∑
i=1

βix
∗
H(τ − 1, 12 + 1− i) + uL(τ). (5.1)

We are regressing the quarterly GDP growth xL(τ) onto a constant, p = 2 quarters of lagged

GDP growth, and hMF = 24 weeks of lagged interest rate spread. We perform the Wald test

based on model (5.1). P-values are computed after generating B = 1000 bootstrap samples

based on Gonçalves and Kilian’s (2004) bootstrap.

Naturally, parsimonious regression models with MF data are specified as

xL(τ) = α0i +

2∑
k=1

αkixL(τ − k) + βix
∗
H(τ − 1, 12 + 1− i) + uL,i(τ), i = 1, . . . , 24. (5.2)

We perform the max test based on model (5.2). P-values are computed with M = 100000 draws

from an approximation to the limit distribution under non-causality.

For comparison, we also perform low frequency (LF) analysis by aggregating the weekly term

spread to the quarterly level. Aggregate the term spread as x∗H(τ) = x∗H(τ,m). A full regression

model with LF data is specified as

xL(τ) = α0 +
2∑

k=1

αkxL(τ − k) +
3∑

i=1

βix
∗
H(τ − i) + uL(τ). (5.3)

This model has q = 2 quarters of lagged xL and hLF = 3 quarters of lagged x∗H . We perform

the Wald test based on model (5.3) again with Gonçalves and Kilian’s (2004) bootstrap.

Similarly, parsimonious regression models with LF data are specified as xL(τ) = α0i +∑2
k=1 αkixL(τ − i) + βix

∗
H(τ − i) + uL,i(τ) for i = 1, 2, 3. Perform the max test based on this

model with M = 100000 draws from the limit distribution under non-causality.

5.2 Empirical results

Figure 1 plots rolling window p-values for each causality test over the 129 windows. All tests

except for the MF Wald test find significant causality from term spread to GDP in early periods.

Significant causality is detected up until 1979:I-1998:IV by the MF max test; 1975:III-1995:II

by the LF max test; 1974:III-1994:II by the LF Wald test. The MF max test has the longest

period of significant causality. These three tests all agree that there is non-causality in recent

periods, possibly reflecting some structural change in the middle of the entire sample.

The MF Wald test, in contrast, suggests that there is significant causality only after subsam-

ple 1990:IV-2010:III, which is somewhat counter-intuitive. This result may stem from parameter

proliferation. The full regression model with mixed frequency data has many more parameters

than any other model. The results of the MF max test seem to be more intuitive and preferable

than the results of the MF Wald test.
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Figure 1: P-values for tests of non-causality from interest rate spread to GDP
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(a) Mixed frequency max test
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(b) Mixed frequency Wald test
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(c) Low frequency max test
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(d) Low frequency Wald test

Rolling window p-values of each causality test are plotted. Each point of the x-axis represents the beginning date

of a given window. The shaded area is [0, 0.05], hence any p-value in that range indicates rejection of non-causality

from the interest rate spread to GDP growth at the 5% level in a given window.
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