
1 

 

Maximum likelihood estimation of a common mean vector  

in the bivariate FGM copula model for meta-analysis  

 

Graduate Institute of Statistics, National Central University, Taiwan 

Jia-Han Shih 

Department of Social Information, Mejiro University, Japan 

Yuan-Tsung Chang 

Department of Mathematical and Physical Sciences, Japan Women’s University, Japan 

Yoshihiko Konno 

Graduate Institute of Statistics, National Central University, Taiwan 

Takeshi Emura 

 

Abstract 

Bivariate meta-analysis is a method to obtain summary estimates where two outcomes are 

collected across different studies. However, most existing methods for bivariate meta-analysis 

are based on the bivariate normal model (Berkey et al. 1998; Riley 2009; Mavridis and Salanti 

2011). Then it is natural to consider an alternative model which provides a different 

dependence pattern from the bivariate normal distribution model. 

We introduce a general copula-based approach including model construction, maximum 

likelihood estimation, and the Fisher information matrix. In this context, we focus on the 

so-called Farlie-Gumbel-Morgenstern (FGM) copula which has a simple and mathematically 

attractive form. This form allows some special mathematical identities and tractable Fisher 

information matrix. These properties make the bivariate FGM copula model suitable for 

fixed-effects meta-analysis. This paper is based on a manuscript currently under review (Shih 

et al. 2018-) with additional discussions on copula models. 
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1 Introduction  

Bivariate meta-analysis is a widely used method in the field of educational research. For 

instance, a meta-analysis can be performed based on bivariate test scores which are collected 

across several studies (Gleser and Olkin 1994; Riley 2009). Traditionally, the bivariate 

meta-analysis is usually based on the bivariate normal model (Berkey et al. 1998; Riley 2009; 

Mavridis and Salanti 2011). We first illustrate the traditional method by giving an example 

based on our original data on bivariate entrance exam scores 

We collect the bivariate entrance exam scores data for entering the Graduate Institute of 

Statistics, National Central University (NCU), Taiwan. The data consist of mathematics and 

statistics scores of 848 students across 5 academic years (from 2013 to 2017). We let i = 1, 

2, …, 5 corresponding to 2013, 2014, …, 2017. The possible range of score is from 0 to 100 

for both two subjects. Based on the individual scores, we compute the mean scores of 

mathematics ( 1iY ) and statistics ( 2iY ), and their covariance matrix ( iC ) for each i. Hence the 

data consist of }5,,2,1),,({ 21 iYY ii . The data are the official records obtained from the 

Admission Division of NCU and are summarized in Figure 1. 

 

 
Figure 1.  Boxplots of the entrance exam scores on Mathematics and Statistics across 5 

academic years (from 2013 to 2017). 

 

We fit the data to the fixed-effects bivariate normal model (Berkey et al. 1998; Mavridis 

and Salanti 2011). For each year i, suppose the mean scores of mathematics ( 1iY ) and statistics 

( 2iY ) follow a bivariate normal distribution. 
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where )1,1( i  is the within-study correlation for year i. All the mean scores ( iY ’s) 

across 5 academic years share the same common mean vector (μ ). Based on the entrance 

exam data, the log-likelihood function is 

.)1log(
2

1
log)2log(5

)1(

1

2

1

)1(
)(

5

1

2
2

1

5

1

2

1

5

1

2

2

5

1 2

22

1

11

2

N





 

 















 











 









 




i

i

j i

ij

j i ij

jij

ii i

i

i

i

i

i
YYY


















μ

 

Then, the maximum likelihood estimator (MLE) of the common mean vector is 
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Computer programs for bivariate meta-analysis are well-developed in R. Here, we apply 

the R command “mvmeta” in the R package “mvmeta” (Gasparrini 2018). The MLE for the 

common mean score of mathematics is 83.35ˆ N

1   (95% confidence interval (CI): 34.51 – 

37.16). On the other hand, the MLE for the common mean score of statistics is 64.38ˆ N

2   

(95% CI: 36.94 – 40.34). The fitted log-likelihood value is -342.65 (the left panel of Figure 2). 

Our analysis reveals that the mean scores of mathematics and statistics are much lower than 

50. This indicates that most students perform poorly on the exam. 

 

 

Figure 2.  Contour plots of the log-likelihood function based on the entrance exam data 

where the points indicate the MLE of the common mean. Left panel: Bivariate normal model, 

Right panel: Bivariate FGM copula model. 
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Traditional meta-analysis based on the bivariate normal model does not allow different 

dependence structure between two outcomes. Then it is natural to consider an alternative 

model which can provide a different dependence structure from the bivariate normal model. 

We shall introduce a copula-based approach in the next section. 

 

2 Copula model 

A bivariate copula is a bivariate distribution function with two marginal uniform distributions 

on the unit interval [0, 1] (Nelsen 2006). One can model the dependence structure between 

two outcomes by using a copula model in which marginal models are flexibly chosen. There 

are many well-known copulas such as the independence (Nelsen 2006), Clayton (Clayton 

1978), Frank (Genest 1987), and Gumbel (Gumbel 1960a) copulas from the Archimedean 

family and the normal (Gaussian) and t-copulas from the elliptical family. 

According to Sklar’s theorem (Sklar 1959), any bivariate distribution can be uniquely 

determined by a bivariate copula and two marginal distributions. Thus, one can represent the 

common mean bivariate normal model in Eq. (1) as 
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where ),(    is the bivariate cumulative distribution function (c.d.f.) of the bivariate 

standard normal distribution with correlation  , )(   is the c.d.f. of )1,0(N , and 

})(),({),( 11N vuvuC    ,   1,0  vu  

is the normal copula. By replacing the normal copula with any other copula, one can construct 

a non-bivariate normal distribution (Genest and Favre 2007).  

 

2.1 Estimation of common mean 

We introduce a general copula-based approach. Suppose that we have an arbitrary copula 
i

Cθ  

indexed by possibly multiple parameters iθ . We define the general copula model as  
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The corresponding density function is  
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θθ  is the copula density. The parameters iθ  can be 
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obtained by solving the moment equations  
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Based on the entrance exam data, the log-likelihood function under the model (2) is 
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Then the MLE of the common mean vector under the general copula model (2) is 
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The MLE does not have closed-form expression under the general copula model. One can 

maximize the log-likelihood function by performing the Newton-Raphson (NR) algorithm 

stated below. 

 

The Newton-Raphson algorithm 

Step 1.  Set the starting values as the univariate estimators 
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Step 2.  Repeat the Newton-Raphson iterations for ,2,1,0k , 
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In our experience, the NR algorithm converges very quickly. The MLE can also be obtained 

by using some computer programs to maximize the log-likelihood function (e.g., the R 

command “nlm” or “optim”).  

Through the above frameworks, one can estimate the common mean vector under a 

non-bivariate normal model by specifying any copula. 
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2.2 Asymptotic inference 

We first define the 22  Fisher information matrix )( μiI  for 5,,2,1 i  as 
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The Fisher information matrix is essential in a likelihood-based approach since it contains all 

necessary information about the asymptotic distribution of the MLE. Shih et al. (2018-) 

derived the expressions of the Fisher information under the FGM copula, which can be used 

to perform interval estimation on the common mean vector. One can also use the observed 

Fisher information matrix which is the negative hessian matrix of the log-likelihood function. 

It is automatically obtained in the convergent step of the NR algorithm. 

If we consider a sample of size n in Eq. (2), we have the samples of random vectors iY , 

5,,2,1 i . The samples are independent but not identically distributed (i.n.i.d.) since 

)()( ji CovCov YY  ,   ji  . 

Therefore, the usual asymptotic theory for the sum of independent and identically distributed 

(i.i.d.) samples cannot be applied to our setting. To verify the consistency and asymptotic 

normality of the MLE, we modify the regularity conditions of Bradly and Gart (1962) in a 

similar manner as Emura et al. (2017c). Under the modified regularity conditions, we apply 

the weak law of large numbers (WLLN) and the Lindeberg-Feller central limit theorem (CLT) 

for i.n.i.d. random variables. We also modify the proofs Lehmann and Casella (1998) who 

provided the detailed proofs for the consistency and asymptotic normality of the MLE under 

i.i.d. samples. The details can be seen from Shih et al. (2018-). 

 

2.3 The FGM copula model 

We consider the so-called Farlie-Gumbel-Morgenstern (FGM) copula which belongs to 

neither the Archimedean nor the elliptical family. The FGM copula is a copula derived from 

the FGM distribution. The FGM distribution was first proposed by Morgenstern (1956) which 

is also traced back to Eyraud (1936). It was later studied by Farlie (1960) and Gumbel 

(1960b). The FGM copula is defined as 

)1()1(),(FGM vvuuuvvuC   ,   1,0  vu ,               (3) 

where  [-1, 1] is the dependence parameter. Eq. (3) shows that the FGM copula has a 

simple analytical form, therefore, it allows closed-form expressions for various dependence 

measures. For instance, Kendall’s tau and Spearman’s rho are 9/2  and 3/ , respectively 

(Nelsen 2006). Note that Kendall’s tau and Spearman’s rho are dependence measures based 

on the concept of concordance and are free from the marginal distributions. On the other hand, 
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the famous Pearson correlation under the uniform, normal, exponential marginal distributions 

are 3/ ,  / , and 4/ , respectively (Schucany et al. 1978). In addition to these 

theoretical aspects, the FGM copula has also been used in real applications (Louzada et al. 

2013; Martinez and Achcar 2014). 

We obtain the common mean bivariate FGM copula model by adapting the FGM copula 

to the general copula model defined in Eq. (2). An interesting feature of the FGM copula is its 

special structure. Eq. (3) reveals that it is written as the sum of an independence copula and a 

function of dependence parameter  . This property directly leads to some mathematical 

identities which are useful for deriving the Fisher information matrix. Under the bivariate 

FGM copula model, the Fisher information matrix can be decomposed into the sum of the 

Fisher information matrix under the independent model and the information related to the 

dependence parameter  . In addition, we approximate the exact Fisher information matrix by 

its linear approximation which is derived by applying the Taylor expansion. Under some mild 

regularity conditions, the consistency and asymptotic normality of the MLE can be proved by 

applying the WLLN and the Lindeberg-Feller CLT for i.n.i.d. random variables. By using the 

asymptotic theory, one can construct a 95% CI based on the exact, approximate, or observed 

Fisher information matrix. All the details of these theoretical results are referred to our 

original paper (Shih et al. 2018-). 

 

3 Entrance exam data revisit 

We fit the entrance exam data to the common mean bivariate FGM copula model. We 

compute the MLE TFGM

2

FGM

1

FGM )ˆ,ˆ(ˆ μ  by the NR algorithm as described in Sect. 2.1. 

The MLE for the common mean score of mathematics is 16.37ˆ FGM

1   (95% CI: 35.85 – 

38.48). On the other hand, the MLE for the common mean score of statistics is 17.41ˆ FGM

2   

(95% CI: 39.48 – 42.87). We only report the 95% CI based on the exact Fisher information 

matrix due to the similarity of all 3 constrictions. The fitted log-likelihood value is -291.80 

(the right panel of Figure 2), that is greater than the log-likelihood value under the bivariate 

normal model (-342.65). 

The estimation results on the common mean scores of mathematics are significantly 

different between the bivariate FGM copula and normal models. The 95% CI of an estimator 

does not include another estimator. The same phenomenon can be found on the common mean 

scores of statistics. These findings typically indicate that at least one model is not suitable for 

the entrance exam data.  

For further investigation, we examine the individual log-likelihood values for each year. 

Figure 3 reveals that the poor fit of the bivariate normal model mainly caused by the poor fit 

for the scores in 2017. This poor fit gives a large influence since the year 2017 has the largest 

number of students. In this case, we suggest choosing the bivariate FGM copula model which 
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produces a larger log-likelihood value. 

 

 
Figure 3.  The individual log-likelihood values (left panel) and number of students (right 

panel) for each year based on the entrance exam data. Higher log-likelihood values 

correspond to better fit of the model. 

 

4 Extensions  

Bivariate meta-analysis has also been applied in the field of medical research, where the 

analysis methods usually have to deal with censoring or dependent competing risks. In such 

studies, the Clayton copula seems to be the most popular copula among others (Burzykowski 

et al. 2001; Emura et al. 2017a; Emura et al. 2017b; Emura and Chen 2018). This is due to the 

simple derivatives of the Clayton copula and its interpretability of the copula parameter. Still, 

the Fisher information matrix of the Clayton copula is not simple even under complete data 

(Schepsmeier and Stöber 2014). Thus, it is an interesting topic to extend the current FGM 

copula model and the Fisher information to incorporate censoring or dependent competing 

risks. Our recent paper shows that the FGM copula with the Burr III marginal models has nice 

tractability for a likelihood-based approach (Shih and Emura 2018), yet the expression of the 

Fisher information has not been given. 
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