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ABSTRACT 

The hybrid log-normal (HLN) distribution is the probability distribution of positive variates X that the 

transformation hyb(ρX) = ρX + ln(ρX) are normally distributed with the mean E[hyb(ρX)] and the variance 

V[hyb(ρX)]. The HLN distribution model has been applied to various data of biology and social statistics 

as well as radiological statistics with the multiple linear regression: normal rank zi vs variables (xi, ln xi) of 

descending ordered data. The paper presents a single regression method of the HLN distribution model 

using the EXCEL functions LINEST and SOLVER, to maximize the R-squared with respect to ρ (> 0), 

including the calculation of standard error. A similar approach is feasible to expand the single regression 

method of data plotted on the hybrid-hybrid section paper as a comprehensive section paper, which 

hybridizes four popular section papers (linear-linear, linear-log, log-log and log-linear) with five additional 

new section papers (linear-hybrid, hybrid-log, log-hybrid, hybrid-linear and hybrid-hybrid) that serve to 

connect the conventional section papers smoothly. 

Keywords: hybrid lognormal distribution, simple regression, hybrid-hybrid section paper. 

 

INTRODUCTION 

The Log-normal distribution was introduced by Galton and McAlister in 1879 to provide the replacement 

of normal distributions that appeared the skewed distribution in vital and social statistics. Since 1965 the 

log-normal distribution has been applied to interpret the characteristics of the distribution of annual doses 

incurred by workers under the regulatory control (Gale, 1965). In 1977 the United Nations Scientific 

Committee on the Effects of Atomic Radiation (UNSCEAR) reported the comprehensive results of the 

lognormal analysis of occupational annual dose statistics over world-wide nations, which was essential for 

establishing the system of dose limitation in the 1977 Recommendations of the International Commission 

on Radiological Protection (ICRP). The statistics of occupational annual doses under the regulatory control, 

however, has been pointed out to deviate from the often-observed lognormal distribution, because of the 

effect of dose limits or levels of radiation control (Gale, 1965; UNSCEAR, 1977).  

In 1980 we proposed the hybrid lognormal distribution to replace the skewed lognormal distribution in 

radiation protection statistics by introducing an exposure control parameter ρ with the inverse unit of dose 

that should explain the degree of active feedback dose control depending on the magnitude of exposure 

(Kumazawa, Shimazaki and Numakunai, 1980; Kumazawa and Numakunai, 1981). Developing the 

computer package of the HLN analysis, the HLN distribution model was applied to complete the report 

(EPA- 520/1-84-005, 1984) on the U.S. occupational exposure to review comprehensively for the year 1980 

including the trends for the years 1960-1985, as one of revision tasks on the Federal radiation protection 

guidance for occupational exposure, approved by the President Reagan in January 27, 1987. 



In statistics the hybrid lognormal distribution was discussed to clarify the characteristics of the 

distribution as well as to verify the genesis of HLN distributions with the martingale central limit theorem, 

including examples to show the feasibility of wide application (Kumazawa and Ohashi, 1986). Especially 

in the case of the lognormal suffered by a constraint of reducing the more the occurrence of data against the 

larger-value, the HLN distribution is adequate to interpret the data in terms of risk control or some constraint 

of underlying phenomena incurred by data. 

It is natural to use the multiple linear regression for the HLN analysis in practice: the regression model 

is defined as 𝑧𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝛾 ln 𝑥𝑖 + 𝜀𝑖 for the ascending ordered data {𝑥𝑖|𝑖 = 1, 𝑛} where the normal 

cumulative distribution function Φ(𝑧𝑖) ≈ prob{𝑋 ≤ 𝑥𝑖},  which is (𝑖 –  0.375) (n +  0.25)⁄   (Blom, 

1958). In 1945 this regression model was first used to analyze the particle size distribution of products 

ground in tube mill (Fagerholt, 1945; A. Hald, 1948). We use the similar model for the HLN analysis with 

the awareness of the positive-value for the active control parameter ρ = β / γ per unit dose or unit quantity 

of data. 

Based on the HLN genesis, it is adequate to introduce the hybrid function hyb(𝑥) = 𝑥 + ln(𝑥) and to 

define the HLN distribution as hyb(𝜌𝑋)~𝑁(𝜇, 𝜎2)  where μ is 𝐸[hyb(𝜌𝑋)]  and 𝜎2  is 𝑉[hyb(𝜌𝑋)] . 

The function hyb(𝜌𝑋) is almost the same to the logarithmic function ln(𝜌𝑋) in the region of ρX < 0.1 

and almost proportional to the linear function of ρX in the region of ρX > 5 but it is neither logarithmic nor 

linear for ρX between 0.1 and 5 or so. The region of ρX from 0.1 to 5 has the special significance to 

concentrate our efforts on risk control of occupational exposure to ionizing radiation. To find the effective 

region of risk control is to estimate the parameter ρ with the standard error reasonably. 

The paper discusses the simple regression model on the HLN distribution using the hybrid function: 

putting ℎ𝑖 = hyb(𝜌𝑥𝑖) of ascending ordered data {𝑥𝑖|𝑖 = 1, 𝑛} and their ranks {𝑧𝑖|𝑖 = 1, 𝑛}of the normal 

probability, the regression model is discussed as ℎ𝑖 = 𝜇 + 𝜎𝑧𝑖 + 𝜀ℎ𝑖 or 𝑧𝑖 = 𝛼′ + 𝛾ℎ𝑖 + 𝜀𝑧𝑖. The former 

contains the parameter ρ in the dependent variable but 𝜌 is assumed that it might be estimated separately 

in advance. This is accomplished by maximizing the R-squared for ρ using the EXCEL functions LINEST 

and SOLVER, including the adjustment to replace degrees of freedom from n - 2 to n - 3. The calculation 

of the standard error of estimate ρ is derived from the F test method of the multiple regression relating to 

R2 (Okuno, Kume, Haga and Yoshizawa, 1977).  

In radiological statistics a pair of positive-value data {𝑢𝑖 , 𝑣𝑖| 𝑖 = 1, 𝑛} both often varies ranging from 

the logarithmic to the linear region continuously connected by the hybrid interface region because of the 

underlying phenomena due to stochastically multiplicative and additive interactions: e.g., chromosome 

aberrations vs radiation dose, etc. Therefore this paper presents, in discussion section, an introductory 

method of the simple regression model hyb(𝜈 ∙ 𝑣𝑖) = 𝛼 + 𝛽 hyb(𝜏 ∙ 𝑢𝑖) + 𝜀2𝐷𝑖 assumed as the known 

parameters  𝜏 and 𝜈  but simultaneously solving by the EXCEL functions LINEST and SOLVER to 

maximize 𝑅2(𝜏, 𝜈) by 𝜏 and 𝜈 with the replacement of degrees of freedom from n - 2 to n - 4. Some 

examples are given to clarify the simple regression of the HLN distribution and the hybrid-hybrid section 

paper that contains basically nine types of linear relationships. 



 

METHOD 

  The density function of the hybrid lognormal distribution is given as follows: 

𝑓(𝑥) =
1

√2𝜋𝜎
(𝜌 +

1

𝑥
) exp [−

(hyb(𝜌𝑥)  −𝜇)2

2𝜎2
]       (𝑥, 𝜌, 𝜎 > 0).                           (1) 

Putting 𝑡 =  𝜌𝑥 , we have 𝑓(𝑡)𝑑𝑡 = 𝑓(𝑥)𝑑𝑥 = 𝜙(𝑧)𝑑𝑧  where 𝜙(𝑧)  is the density function of the 

standard normal cumulative function Φ(𝑧)  and hyb(𝜌𝑥) = hyb(𝑡) = 𝑡 + ln(𝑡) = 𝜇 + 𝜎𝑧  or 𝑧 =

(hyb(𝑡)−𝜇) 𝜎⁄ . Then the simple regression model is 

ℎ𝑖 = hyb(𝑡𝑖) = 𝜇 + 𝜎𝑧𝑖 + 𝜀ℎ𝑖 ,         𝑖 = 1, 2,⋯ , 𝑛                                                          (2) 

where E[𝜀ℎ𝑖] = 0, V[𝜀ℎ𝑖] = 𝜎ℎ
 2, Cov[𝜀ℎ𝑖 , 𝜀ℎ𝑗]𝑖≠𝑗 = 0 and 𝜀ℎ𝑖  ~ 𝑁(0, 𝜎ℎ 2).  For the known parameter ρ 

the simple regression model can be solved in the usual way. The unknown parameter ρ needs to discuss on 

the simple regression in terms of the estimate of ρ with the standard error because of ℎ𝑖 = hyb(𝜌𝑥𝑖). 

For the comparison the multiple linear regression model and another simple regression model are given: 

𝑧𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝛾 ln 𝑥𝑖 ++𝜀𝑖      (𝛽, 𝛾 > 0, 𝜌 = 𝛽 𝛾⁄  ),                                                (3)  

𝑧𝑖 = 𝛼′ + 𝛾ℎ𝑖 + 𝜀𝑧𝑖      (  𝜌, 𝛾 > 0,   ℎ𝑖 = hyb(𝜌𝑥𝑖) ).                                                     (4) 

To estimate the parameter ρ there are several approaches, e.g. a Bayesian procedure of the estimation of the 

hybridization parameter ρ for a specific prior distribution for ρ, μ and σ (Groer and Uppuluri, 1991) and the 

maximum likelihood estimation of the parameters of the hybrid lognormal distribution (Sont, 1991), etc. As 

a practical way this paper is to reasonably solve the simple regression model in Equation (2) with the 

unknown parameter ρ. This attains to maximize the coefficient of determination R2 of Equation (2) for ρ. 

 The R-squared of Equation (2) is derived as follows: 

𝑅2(𝜌) =
𝑆𝑧ℎ(𝜌)

2

𝑆ℎℎ(𝜌) 𝑆𝑧𝑧
=

(𝜌𝑆𝑥𝑧 + 𝑆𝑦𝑧)
2

(𝜌2𝑆𝑥𝑥 + 𝜌𝑆𝑥𝑦 + 𝑆𝑦𝑦) 𝑆𝑧𝑧
,                                                       (5) 

where 𝑆ℎℎ(𝜌) = ∑ 𝐻𝑖
2

𝑛  , 𝑆𝑧𝑧 = ∑ 𝑍𝑖
2

𝑛  , 𝑆𝑧ℎ = ∑ 𝑍𝑖𝑛 𝐻𝑖 ,  𝑆𝑥𝑥 = ∑ 𝑋𝑖
2

𝑛   𝑆𝑦𝑦 = ∑ 𝑌𝑖
2

𝑛  , 𝑆𝑥𝑦 = ∑ 𝑋𝑖𝑛 𝑌𝑖 , 

𝑆𝑥𝑧 = ∑ 𝑋𝑖𝑛 𝑍𝑖  and  𝑆𝑦𝑧 = ∑ 𝑌𝑖𝑛 𝑍𝑖 , and deviations 𝐻𝑖 = ℎ𝑖 − 𝐸[ℎ𝑖] , 𝑍𝑖 = 𝑧𝑖 − 𝐸[𝑧𝑖] , 𝑋𝑖 = 𝑥𝑖 − 𝐸[𝑥𝑖] 

and 𝑌𝑖 = ln𝑥𝑖 − 𝐸[ln 𝑥𝑖].  

  The estimation of the parameter ρ is the maximum of 𝑅2(𝜌) with respect to ρ:  

𝜕𝑅2(𝜌)

𝜕𝜌
= 0        ∴ �̂�𝑅2 =

𝑆𝑥𝑦𝑆𝑦𝑧 − 𝑆𝑥𝑧𝑆𝑦𝑦

𝑆𝑥𝑦𝑆𝑥𝑧 − 𝑆𝑥𝑥𝑆𝑦𝑧
=
𝐴𝑧𝑥
𝐴𝑧𝑦

,                                                      (6) 

where 𝐴𝑧𝑥 𝑎𝑛𝑑 𝐴𝑧𝑦 are the cofactors of 𝑆𝑧𝑥 𝑎𝑛𝑑 𝑆𝑧𝑦, respectively, of the following matrix 𝑆: 

𝑆＝(

𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧
𝑆𝑦𝑥 𝑆𝑦𝑦 𝑆𝑦𝑧
𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧

)                                                                                                         (7) 



The estimate �̂�𝑅2 in Equation (6) is equal to the estimate of ρ to maximize the R-squared as well as to 

minimize the sum of squared errors (residuals) in Equations (3) and (4) but it is different to the estimate �̂�ℎ 

to minimize the sum of squared errors 𝑆ℎ𝑒(𝜌) in Equation (2). However, the sum of squared errors 
𝑆𝑧𝑒(𝜌) in Equation (4) and 𝑆ℎ𝑒(𝜌) in Equation (2) satisfy the following equation: 

1 − 𝑅2(𝜌) =
𝑆ℎ𝑒(𝜌)

𝑆ℎℎ(𝜌)
=
 𝑆𝑧𝑒(𝜌)

𝑆𝑧𝑧
.                                                                                          (8) 

For the estimate �̂�𝑅2 as the maximum of 𝑅2(𝜌) in Equation (2), Equation (8) results in:  

1 − 𝑅2(�̂�𝑅2) =
𝑆ℎ𝑒(�̂�𝑅2)

𝑆ℎℎ(�̂�𝑅2)
=
 𝑆𝑧𝑒(�̂�𝑅2)

𝑆𝑧𝑧
=

|𝑆|

𝐴𝑧𝑧𝑆𝑧𝑧
,                                                             (9) 

where |𝑆| is the determinant of S and 𝐴𝑧𝑧 = 𝑆𝑥𝑥𝑆𝑦𝑦 − 𝑆𝑥𝑦
2, the cofactor of the element 𝑆𝑧𝑧 of matrix S. 

  The residual variance 𝑉𝑧𝑒(�̂�𝑅2) = 𝑆𝑧𝑒(�̂�𝑅2) (𝑛 − 3)⁄  provides the standard error 𝑠𝑒(�̂�𝑅2) as 𝑆𝑧𝑒(𝜌) =

𝑆𝑧𝑒(�̂�𝑅2 + 𝑠𝑒(�̂�𝑅2)) = 𝑆𝑧𝑒(�̂�𝑅2) + 𝑉𝑧𝑒(�̂�𝑅2) and 𝑅2(𝜌) = 𝑅2 (�̂�𝑅2 + 𝑠𝑒(�̂�𝑅2)) is obtained as follows: 

𝑆𝑧𝑒(𝜌)

𝑆𝑧𝑧
=
𝑆𝑧𝑒(�̂�𝑅2) + 𝑉𝑧𝑒(�̂�𝑅2)

𝑆𝑧𝑧
=
𝑆𝑧𝑒(�̂�𝑅2)

𝑆𝑧𝑧

𝑛 − 2

𝑛 − 3
=

|𝑆|

𝐴𝑧𝑧𝑆𝑧𝑧

𝑛 − 2

𝑛 − 3
= 1 − 𝑅2(𝜌) 

𝑅2(𝜌) =
(𝜌𝑆𝑥𝑧 + 𝑆𝑦𝑧)

2

(𝜌2𝑆𝑥𝑥 + 2𝜌𝑆𝑥𝑦 + 𝑆𝑦𝑦)𝑆𝑧𝑧
= 1−

|𝑆|

𝐴𝑧𝑧𝑆𝑧𝑧

𝑛 − 2

𝑛 − 3
=
𝑐𝑧
𝑆𝑧𝑧

.                                 (10) 

Equation (10) is solved as the quadratic equation with respect to ρ: 

𝜌2(𝑐𝑧𝑆𝑥𝑥 − 𝑆𝑥𝑧
2) + 2 𝜌(𝑐𝑧𝑆𝑥𝑦 − 𝑆𝑥𝑧𝑆𝑦𝑧) + 𝑐𝑧𝑆𝑦𝑦 − 𝑆𝑦𝑧

2 = 0, 

𝜌 =
−(𝑐𝑧𝑆𝑥𝑦 − 𝑆𝑥𝑧𝑆𝑦𝑧) ± √𝑐𝑧𝐴𝑧𝑧{𝑆𝑧𝑧𝑅2(�̂�𝑅2) − 𝑐𝑧}

(𝑐𝑧𝑆𝑥𝑥 − 𝑆𝑥𝑧
2)

 , 

∴  𝑠𝑒(�̂�𝑅2) =
𝜌2 − 𝜌1

2
=
√𝑐𝑧𝐴𝑧𝑧{𝑆𝑧𝑧𝑅2(�̂�𝑅2) − 𝑐𝑧}

(𝑐𝑧𝑆𝑥𝑥 − 𝑆𝑥𝑧
2)

 .                                                   (11) 

The range between 𝜌1 and 𝜌2 of the simple regression in Equation (2) is given in terms of 𝑅2(𝜌) for 

maximization or 1 − 𝑅2(𝜌) for minimization. Thus, 𝜌 = �̂�𝑅2 + 𝑠𝑒(�̂�𝑅2) satisfies the following equation: 

𝑅2(𝜌) = 𝑅2(�̂�𝑅2) −
1 − 𝑅2(�̂�𝑅2)

𝑛 − 3
  𝑜𝑟   1 − 𝑅2(𝜌) = 1 − 𝑅2(�̂�𝑅2) +

1 − 𝑅2(�̂�𝑅2)

𝑛 − 3
      (12) 

The standard error of �̂�𝑅2  is to calculate as (𝜌2 − 𝜌1) 2⁄   because �̂�𝑅2 − 𝜌1  is not always equal to 

𝜌2 − �̂�𝑅2. In the case of distribution characteristics to be purely lognormal-dominant or normal-dominant, 

the HLN analysis can be performed to select the estimate 𝜌 = 0.1/𝑥𝑛 for the negative or too much small 

value of the estimate 𝜌 (lognormal-dominant) or to select the estimate 𝜌 = 5/𝑥1 for the infinitive or too 

much large value of the estimate  𝜌  (normal-dominant). Thus, the HLN model provides the analysis 

approach of data ranging from the lognormal-dominant to the normal-dominant systematically. 

 



RESULTS OF ANALYSIS 

Using the well-known data on the number of words per sentence in 60 sentences taken from a certain of 

Toynbee’s “A Study of History” (Wilks, 1948), the left panel in Figure 1 shows the graph of 𝑅2(𝜌) so that 

it should change from the log-normal (𝜌 → 0) to the normal (𝜌 → +∞) via the hybrid lognormal model by 

increasing the value of 𝜌. R2 (𝜌 → 0) is larger than R2 (𝜌 → +∞) but the largest is 𝑅2(𝜌 = �̂�𝑅2). The right 

panel is the enlarged view of the bold curve on the left panel to show how the standard error se(�̂�𝑅2) is 

decided based on Equation (12). 

  
Figure 1. The graph of R2(ρ) in Equation (2) by ρ and the interval of ρ for �̂�𝑅2± se (�̂�𝑅2). 

Left panel is R2(ρ) ranging from the LN to the Normal model, and right panel shows how to decide se (�̂�𝑅2):  �̂� = �̂�𝑅2 . 
 

   
Figure 2. Other options to calculate the standard error of the estimate �̂�𝑅2. 

    Upper panel: based on She(ρ), not practicable; lower panel: based on 1 - R2(ρ), another good option. 

Figure 2 shows other options to calculate the standard error se(�̂�𝑅2). The upper panel shows a method 

based on minimizing 𝑆ℎ𝑒(𝜌) of Equation (2), which is somewhat complicated to use. The lower panel 

shows another good method based on minimizing 1 − 𝑅2(𝜌), namely 𝑆ℎ𝑒(𝜌) 𝑆ℎℎ(𝜌)⁄ . 

These examples confirm that the above-mentioned method is valid and reasonable to estimate ρ with the 
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standard error as the simple regression model. According to the method, the resultant statistics on the data 

of words per sentence are �̂� = 0.4084 ± 0.0096, �̂� = 0.7972 ±  0.00985, �̂� =  0.01294 ±  0.00236, 

and 𝑅2 = 0.9912. Figure 3 (a) shows the good fitting to the data all of which are within the 95% prediction 

interval. The number of words per sentence might be the result of making sentences to clarify the thought 

considering the readability. Interpreting the graph, Toynbee would write the sentences lognormally for 

words / sentence less than 8 but hybrid lognormally for words / sentence above 44. Thus, there is a 

possibility to avoid a long sentence in Toynbee. Figure 3 (b) shows approaching the normality in the longer 

sentence. The normality of the residuals is pretty good shown in Figure 2 (d). 

   The HLN distribution tells us how to cope with increasing risks and the effective range of risk control 

in terms of the control parameter ρ. For example, the statistical fluctuation in running speed is important for 

football players to maintain flexible mobility as well as to avoid exhaustion. The distribution of running 

speeds during the game shows the HLN distribution characteristics. Eyes speed data during viewing still / 

moving pictures are also hybrid lognormally distributed. Thus, somewhat similarities exit like the radiation 

dose in terms of risk management to gain the benefit during a small risk but to avoid the significant risk. 

 
(a) HLN probability plots of data of words/sentence (b) Normal probability plots of data 

 
(c) Residuals: 𝜀ℎ𝑖 = hyb(�̂�𝑅2𝑥𝑖) − �̂� − �̂�𝑧𝑖  vs 𝑧𝑖 (d) Probability plots of ascending ordered {𝜀ℎ𝑖}. 

Figure 3. The HLN analysis of 60 ascending ordered data on the number of words per sentence. 
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DISCUSSION 

The hybrid lognormal distribution is relating to the multiple linear regression method by Fagerholt (1945) 

and Hald (1948). We, as stuff of former JAERI, developed it so that it should reasonably interpret how to 

cope with radiation exposure risk with some uncertainty. Such risk control issues are common in 

environmental exposure statistics, health risk statistics, economic/social statistics, etc. Therefore, the HLN 

distribution should be discussed widely by statisticians because of the issues still unsolved. 

The variation of the HLN distribution needs for X > a > 0 as hyb(𝜌(𝑋 − 𝑎))~𝑁(𝜇, 𝜎2) and for 0 < a 

< X < b as hyb(𝜌 (𝑋 − 𝑎) (𝑏 − 𝑋)⁄ )~𝑁(𝜇, 𝜎2), the latter of which calls “the hybrid SB distribution” like 

the Johnson’s SB distribution. These have been developed to analyze data in radiation protection and nuclear 

environmental safety assessment. Radiological data relating to the Fukushima DAIICHI accident shows 

examples of the variation to be the HLN distribution. The systematic random number generation for the 

radiological uncertainty analysis has been developed a system of normal family distributions that contains 

the lognormal, hybrid lognormal and positive-value normal distributions in the region defined X > 0, X > a 

> 0 and 0 < a < X < b. All of these use the simple regression analysis. 

The data relating to radiation emission processes, radiation interactions with matters, and radiation dose 

to man in various exposure situations are resultant effects due to stochastically multiplicative and additive 

interactions. The data other than radiation protection shows the similar effects with simultaneously 

multiplicative and additive uncertainty. Depending on the dominancy between multiplicative and additive 

components, the variation characteristics changes to be purely logarithmic, to be logarithmic in the lower 

side but linearly in the upper side and to be purely linear. The hybrid function found from the development 

the HLN distribution covers the wide range of variations from the logarithmic region to the linear region 

continuously connected both via the hybrid interface region.  

If the hybrid function expresses as a scale like the logarithmic scale, the new scale is defined, called “the 

hybrid scale.” It consists of three major regions, the logarithmic for ρx < 0.1 of hyb(𝜌𝑥), the truly hybrid 

for 0.1 ≤ ρx ≤ 5 of hyb(𝜌𝑥) and the linear region for ρx > 5 of hyb(𝜌𝑥). Suppose the ascending ordered 

data of positive value {𝑥𝑖|𝑖 = 1, 𝑛}, all hyb(𝜌𝑥𝑖) are in the logarithmic region for 𝜌 < 0.1 𝑥𝑛⁄  and in the 

linear region for 𝜌 > 5 𝑥1⁄ . Thus, the hybrid scale can express the log-, truly-hybrid- and linear-region of 

data with hyb(𝜌𝑥)  by selecting a proper value of 𝜌 . Applying the hybrid scale to the vertical and 

horizontal axes graduated with a hybrid scale, a new section paper is provided (Figure 4). This is called “the 

hybrid-hybrid section paper” like the term of the log-log one. In radiation protection, quantities often change 

by orders of magnitude that should be modeled by the logarithmic scale but the magnitude of exposure in 

control is managed in the same order of magnitude that should be modeled by the hybrid scale gradually 

approaching the linear scale. The hybrid-hybrid section paper contains nine section paper regions of four 

conventional ones (linear-linear, linear-log, log-log and log-linear) and five interface ones (linear-hybrid, 

hybrid-log, log-hybrid, hybrid-linear and hybrid-hybrid). Each of five interface regions is corresponding to 

five types of new independent section papers (Figure 4 (b), (c)). 



 

 

Nine types of section papers 

 
Conventional section papers 
 linear-linear, linear-log, log-log & log-linear 
New section papers: connecting above papers 
 linear-hybrid, hybrid-log, log-hybrid, 
hybrid-linear, hybrid-hybrid 

(a) A hybrid-hybrid section paper           (b) Nine types of section papers included in it. 

  Semi-Log section paper 
𝑦 = 𝛼 + 𝛽 ln(𝑥) + 𝜀 

𝑥 = exp[(𝑦 − 𝛼) 𝛽⁄ ] + ε′ 

Semi-Hybrid section paper 
𝑦 = 𝛼 + 𝛽 hyb(𝜏𝑥) + 𝜀 

 𝑥 = 𝜏−1 cyb[(𝑦 − 𝛼) 𝛽⁄ ] + ε′ 

Normal section paper 
𝑦 = 𝛼 + 𝛽𝑥 + 𝜀 

𝑥 = (𝑦 − 𝛼) 𝛽⁄ + ε′ 

Log-Hybrid section paper 
hyb(𝜈𝑦) = 𝛼 + 𝛽 ln(𝑥) + 𝜀 

𝑥 = exp[(hyb(𝜈𝑦) − 𝛼) 𝛽⁄ ] + ε′ 

Hybrid-Hybrid section paper 
hyb(𝜈𝑦) = 𝛼 + 𝛽 hyb(𝜏𝑥) + 𝜀 

 𝑥 = 𝜏−1 cyb[(hyb(𝜈𝑦) − 𝛼) 𝛽⁄ ] + ε′ 

Semi-Hybrid section paper 
hyb(𝜈𝑦) = 𝛼 + 𝛽𝑥 + 𝜀 

𝑥 = (hyb(𝜈𝑦) − 𝛼) 𝛽⁄ + ε′ 

Log-Log section paper 
ln(𝑦) = 𝛼 + 𝛽 ln(𝑥) + 𝜀 

𝑥 = exp[(ln(𝑦) − 𝛼) 𝛽⁄ ] + ε′ 

Log-Hybrid section paper 
ln(𝑦) = 𝛼 + 𝛽 hyb(𝜏𝑥) + 𝜀 

 𝑥 = 𝜏−1 cyb[(ln(𝑦) − 𝛼) 𝛽⁄ ] + ε′ 

Semi-Log section paper 
ln(𝑦) = 𝛼 + 𝛽𝑥 + 𝜀 

𝑥 = (ln(𝑦) − 𝛼) 𝛽⁄ + ε′ 

(c) Nine types of linear equations for nine types section papers organized by the hybrid function 

Figure 4. An example of the hybrid-hybrid section paper that contains nine types of section papers. 
This section paper allows any linear relationships among linear, logarithmic, power and exponential functions. 
The inverse of hyb(x) is denoted as cyb (x), called “the cyb function” that is the hybrid between exp(x) and x. 

 
  Because of the tri-regionality of the hybrid scale as log, hybrid and linear regions, the linear relationship 

on the hybrid-hybrid section paper sufficiently approximates nine types of linear relationships 

corresponding to nine types of section papers shown in Figure 4 (c). For data {𝑥𝑖 , 𝑦𝑖|𝑖 = 1, 𝑛} sorted by 

𝑥𝑖 in ascending order, where yi does not mean yi = ln (𝑥𝑖) in Equations after (5), a hybrid-hybrid simple 

regression model is given by: 

𝑣𝑖 = 𝛼 + 𝛽𝑢𝑖 + 𝜀2𝐷𝑖    ←  hyb(𝜈𝑦𝑖) = 𝛼 + 𝛽 hyb(𝜏𝑥𝑖) + 𝜀2𝐷𝑖     ( 𝑖 = 1,⋯ , 𝑛).    (13) 

For the known parameters τ and ν the simple regression model can be solved in the usual way. For the 

unknown τ and ν, scaling parameters with the inverse unit of x and y, respectively, the similar approach of 

the HLN model is applicable to attain the global maximum of 𝑅2(𝜏, 𝜈) using LINEST and SOLVER, with 

the nuisance parameters α, β and the residual 𝜀2𝐷𝑖. This approach is to find the best linearity of plotting 

data on the hybrid-hybrid section paper as a comprehensive section paper, despite the linearity of the data 

ranging across any several types of nine section papers. 

 



The R-squared of Equation (13) is 𝑅2 = 𝑆𝑢𝑣
2 𝑆𝑢𝑢𝑆𝑣𝑣⁄  where 𝑆𝑢𝑢, 𝑆𝑣𝑣 and 𝑆𝑢𝑣 are the sum of squared 

deviations and the sum of deviation products for 𝑢𝑖  𝑎𝑛𝑑 𝑣𝑖 , respectively, and using hyb(𝜏𝑥𝑖)  and 

hyb(𝜈𝑦𝑖), 

𝑅2 =
𝑆𝑢𝑣

2

𝑆𝑢𝑢𝑆𝑣𝑣
=

(𝜏𝜈𝑆𝑥𝑦 + 𝜏𝑆𝑥𝑦𝐿 + 𝜈𝑆𝑦𝑥𝐿 + 𝑆𝑥𝐿𝑦𝐿)
2

(𝜏2𝑆𝑥𝑥 + 2𝜏𝑆𝑥𝑥𝐿 + 𝑆𝑥𝐿𝑥𝐿)(𝜈
2𝑆𝑦𝑦 + 2𝜈𝑆𝑦𝑦𝐿 + 𝑆𝑦𝐿𝑦𝐿)

,                   (14)     

𝑆𝑢𝑢 = 𝜏
2𝑆𝑥𝑥 + 2𝜏𝑆𝑥𝑥𝐿 + 𝑆𝑥𝐿𝑥𝐿    ←  ∑(𝜏(𝑥𝑖 − 𝐸[𝑥𝑖]) + ln(𝑥𝑖) − 𝐸[ln(𝑥𝑖)])

2 = ∑(𝜏𝑋𝑖 + 𝑋𝐿𝑖)
2, 

𝑆𝑣𝑣 = 𝜈
2𝑆𝑦𝑦 + 2𝜏𝑆𝑦𝑦𝐿 + 𝑆𝑦𝐿𝑦𝐿    ←  ∑(𝜈(𝑦𝑖 − 𝐸[𝑦𝑖]) + ln(𝑦𝑖) − 𝐸[ln(𝑦𝑖)])

2 = ∑(𝜈𝑌𝑖 + 𝑌𝐿𝑖)
2, 

𝑆𝑢𝑣 =  𝜏𝜈𝑆𝑥𝑦 + 𝜏𝑆𝑥𝑦𝐿 + 𝜈𝑆𝑥𝐿𝑦 + 𝑆𝑥𝐿𝑦𝐿  ←  ∑(𝜏𝑋𝑖 + 𝑋𝐿𝑖)(𝜈𝑌𝑖 + 𝑌𝐿𝑖).  

Based on equations satisfied 𝜕𝑅2 𝜕𝜏⁄ = 0, 𝜕𝑅2 𝜕𝜈⁄ = 0  and 𝜕2𝑅2 𝜕𝜏𝜕𝜈⁄ = 0 , the estimation of 

parameters  𝜏 and 𝜈 are given as follows: 

�̂� =
𝑆𝑥𝑥𝐿𝑆𝑦𝑥𝐿 − 𝑆𝑥𝑦𝑆𝑥𝐿𝑥𝐿
𝑆𝑥𝑦𝑆𝑥𝑥𝐿 − 𝑆𝑥𝑥𝑆𝑥𝐿𝑦

,          �̂� =
𝑆𝑥𝑦𝐿𝑆𝑦𝑦𝐿 − 𝑆𝑥𝑦𝑆𝑦𝐿𝑦𝐿
𝑆𝑥𝑦𝑆𝑦𝑦𝐿 − 𝑆𝑦𝑦𝑆𝑥𝑦𝐿

.                                    (15)     

The sum of squared errors (residuals) 𝑆2𝐷𝑒(�̂�, �̂�)  and the residual variance 𝑉2𝐷𝑒(�̂�, �̂�) = 𝑆2𝐷𝑒(�̂�, �̂�) 𝑓𝑒⁄  , 

𝑓𝑒 = 𝑛 − 4 , provide the level of reducing 𝑅2  from the maximum 𝑅2(�̂�, �̂�)  to 𝑅2(�̂�, �̂�) −

(1 − 𝑅2(�̂�, �̂�)) 𝑓𝑒⁄ . Then their standard errors se(�̂�) and se(�̂�) are obtained from the value of 𝜏 and 𝜈 to 

satisfy the level. 

  
(a) Data (Edwards et al.) plotted on nine papers (b) Several data plots on hybrid-hybrid section paper 

Figure 5. An example of chromosome aberration data plotted on the hybrid-hybrid section paper. 

Figure 5 shows examples of the hybrid-hybrid analysis on several experimental chromosomal aberration 

data (Indrawati and Kumazawa, 2000). Figure 5 (a) is the nine types of plots on frequencies of dicentrics 

observed in human lymphocytes irradiated by x-rays at 1 Gy/min (Edwards et el. 1979). The hybrid-hybrid 

plot is the best maximum of 𝑅2(�̂�, �̂�). Figure 5 (b) shows several plots of various types of chromosome 

aberration data, the linearity of which is attained across different regions of the hybrid-hybrid section paper. 
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The hybrid-hybrid analysis has been applied to various data in vital and biological data as well as radiation 

protection: basic trend of dose reduction due to the Fukushima DAIICHI accident (Kumazawa, 2013), 

resuspension factor vs time after deposition (Kumazawa, 2014), sky-shine dose vs photon source distance 

(Kumazawa, 2015 in Japanese), various types of dose vs response (Kumazawa, 2001, 2015), and others, 

e.g., hyb[𝜌𝑃 (𝑏 − 𝑃)⁄ ]  𝑣𝑠 𝑎𝑔𝑒  by income category (low to high) cited from the WHO GHO 2015 

statistics: P is population (< b). 
 

CONCLUSION   

This paper presented a practical method for a single regression model of hybrid log normal distribution. 

It also showed that this method is applicable to the calculation of the linear relationship plotted on the 

hybrid-hybrid section paper, whose axes are graded in the hybrid scale of log and linear scales. 
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