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Suppose we have N samples x1, · · · , xN from a parametric distribution

p(x | θ) = 1

Z(θ)
p̃(x | θ),

where θ is an unknown parameter and Z(θ) is the normalization constant. For several
statistical models, only the non-normalized density p̃(x | θ) is given and the calculation
of Z(θ) is intractable. Thus, several methods have been developed to estimate θ
without explicitly computing Z(θ). Here, we focus on noise contrastive estimation [3].

In noise contrastive estimation (NCE), the non-normalized model is rewritten as

log p(x | θ, c) = log p̃(x | θ) + c,

where the scalar c = − logZ(θ) is also viewed as an unknown parameter and estimated
from data. In addition to data x1, · · · , xN , we generate M noise samples y1, · · · , yM
from a noise distribution n(y). Then, the estimate of (θ, c) is defined by learning to
discriminate between the data and the noise as accurately as possible:

(θ̂NCE, ĉNCE) = argmax
θ,c

ĴNCE(θ, c),

where

ĴNCE(θ, c) =

N∑
t=1

log
Np(xt | θ, c)

Np(xt | θ, c) +Mn(xt)
+

M∑
t=1

log
Mn(yt)

Np(yt | θ, c) +Mn(yt)
.

The objective function ĴNCE is the log-likelihood of the logistic regression classifier.
NCE has consistency and asymptotic normality under mild regularity conditions. Re-
cently, NCE was extended to estimate a finite mixture of non-normalized models [4].

In this study, we derive information criteria for models estimated by NCE. Based
on an observation that NCE is a projection with respect to a Bregman divergence [2],
we develop an approximately unbiased estimator of model discrepancy induced by this
Bregman divergence. Note that AIC [1] was derived as an approximately unbiased
estimator of the Kullback-Leibler discrepancy. Experimental results demonstrate that
the proposed criterion is useful for selection of non-normalized models. For example, it
can be used for selecting the number of components in non-normalized mixture models.
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