角度データのための扇形ヒストグラムの漸近的性質

和歌山県データ利活用推進センター研究員金沢大学経済学経営学系

角度データ（風向等）は周期性をもつために実数直線上のデータと位相構造が異なり，単位円周上の点として表される。 そのために角度データを扱うための独自の統計学が発展し，最近では方向統計学と呼ばれる統計学の 1 つの分野となっ ている。方向統計学では角度データ（変数）$\Theta \sim f(\theta)$ を周期性を持つ密度関数 $f(\theta)(f(\theta)=f(\theta+2 \pi))$ に従うと定義 する。

本稿では角度データのためのヒストグラムを密度推定量と考え，その理論的性質を議論する。角度データのヒストグ ラム推定で最も用いられているのはローズダイアグラムである。ローズダイアグラムは，データが入る区間であるビン $B_{k}:=\left[t_{k}, t_{k+1}\right) \in[-\pi, \pi)$ を中心角として持つ面積 $v_{k} / n\left(B_{k}\right.$ の相対頻度）の扇形 S_{k} を原点周りに並べることで定義 される。一般的に各ビン B_{k} の中心角の大きさはすべて h（等角度）とする。このとき，扇形の面積の公式から S_{k} の半径は $r_{k}=\sqrt{2 v_{k} /(n h)}$ である。
分布関数 $F(\theta)$ を原点 O から伸びる線分 $r_{f}(\theta)$ の通過領域からなる扇形として与元る。 $f(\theta)=d F(\theta) / d \theta$ なので扇形の面積の公式より $r_{f}(\theta)=\sqrt{2 f(\theta)}$ となる。ここで，ローズダイアグラムの半径 r_{k} を $r_{f}(\theta)$ の推定量と考え，ロー ズダイアグラム推定量を

$$
\hat{r}(\theta ; h):=\sqrt{2 v_{k} /(n h)}, \quad \theta \in B_{k}
$$

と定義する。通常のヒストグラム推定量 $\hat{f}(\theta ; h):=v_{k} /(n h)$ を用いると $\hat{r}(\theta ; h)=\{2 \hat{f}(\theta ; h)\}^{1 / 2}$ となる。ローズダイ アグラム推定量の誤差基準として，平均積分二乗誤差（MISE）MISE $[\hat{r}(\theta ; h)]:=\mathrm{E}\left[\int_{-\pi}^{\pi}\left\{\hat{r}(\theta ; h)-r_{f}(\theta)\right\}^{2} d \theta\right]$ を採用 する。ちなみに，MISE $[\hat{r}(\theta ; h)]$ は，$\hat{r}(\theta ; h)$ の定義から Hellinger 距離 $\operatorname{HD}[\hat{f}(\theta ; h)]:=\int_{-\pi}^{\pi}\{\hat{f}(\theta ; h)-f(\theta)\}^{2} d \theta$ の期待值に対応することが容易に分かる。本稿の主要な結果は次の 3 点である：

- $\operatorname{MISE}[\hat{r}(\theta ; h)]$ の導出 $\left(\operatorname{MISE}[\hat{r}(\theta ; h)]=O\left(n^{-2 / 3}\right)\right)$ ．
- MISE 基準に基づくビン幅 h の推定量の提案．
- frequency polygonを応用したローズダイアグラムの改良 $\left(\operatorname{MISE}=O\left(n^{-4 / 5}\right)\right.$ ）．

当日の発表ではこれらの結果と合わせて， $\operatorname{MISE}[\hat{r}(\theta ; h)]$ と Hellinger 距離の対応関係について理論的に考察する。ま た，ローズダイアグラム推定量に関する数値実験の結果は当日発表する。

図1 風向を表す Wind データ $(n=310)$ ．Wind図2 Wind データのローズダイアグラム。 データは，統計ソフトRの circular パッケージか ら取得できる。

