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1. PCA and FA as Matrix Factorization     
Let X be an n-observations  p-variables column-centered data matrix, where the p variables are supposed to 

be explained by m common factors with rank(X) = p > m. By abbreviating “subject to” as “s.t.”, principal 
component analysis (PCA) and factor analysis (FA) can be formulated as 

PCA: minF, A X  FA2 s.t. n1FF = Im (the m  m identity matrix),                (1) 

FA:  minF, A, U,  X  (FA+ U)2 = X  [F,U][A,]2 s.t. n1[F,U][F,U] = Im+p ,          (2) 

respectively[1,2]. Here, F (n  m) is a matrix of PC/common-factor scores, A (p  m) contains PC/factor loadings 
of variables,  (p  p) is diagonal, and the jth column of U (n  p) uniquely affects that of X. In a sparse version 
of PCA and FA, the constraint cd(A) = k or cd(A)  k is added in (1) and (2)[3,4], with k a positive integer and 
cd(A) the cardinality of A (i.e., its number of nonzero elements). This paper aims to present a formulation in 
which (1), (2), and their variants can be treated within a unified framework. 

2. Generalized Sparse Component/Factor Analysis (GSCFA) 
   I propose a generalization of (1) and (2) which can include them and their sparse versions:  

minZ,C f(Z,C) = X  ZC2 s.t. n1ZZ = Iq and (3) cd(C) = k or cd(C)  k for given k    (3) 

Here, q  m + p, Z is n  q, and C = [c1, … , cq] (p  q) contains the coefficients for Z with cd(cj)  cd(cj+1).  
This problem may be called GSCFA, as it can give a PCA solution with C = [A, O] for k = pmm(m1)/2 

and an FA solution with C = [A, , O] for k = pmm(m1)/2+p, with O a zero matrix. GSCFA (4) can also lead 
to a sparse PCA or FA solution (when k is a sufficiently small number). Further, GSCFA can provide a solution 
hybrid between PCA and FA, in which some variables are explained only by m common factors and others are 
affected by unique factors. Here, what type of solutions is given is unknown in advance.   

3. Algorithm for Fixed Cardinality 
   GSCFA (4) can be solved by alternately iterating the two steps described in the next paragraphs.  

In the first step, f(Z,C) in (3) is minimized over Z s.t. n1ZZ = Iq for given C. It amounts to maxZ g(Z) = 
tr(XC)Z s.t. n1ZZ = Iq. The singular value decomposition of XC defined as XC = KL leads to that g(Z)  
tr and the upper limit tr is attained for Z = n1/2(KL + KL) with [K, K][K, K] = [L, L][L, L] = Iq

[2]. 
In the next, f(Z,C) is minimized over constrained C, for given Z. It should be noted that f(Z,C) = X  

ZSXZ2 + nSXZ C2 under n1ZZ = Iq, with SXZ = n1XZ. Thus, our task is minC SXZ C2 s.t. cd(C) = k / 
cd(C)  k, which can be attained without / with a penalty function, respectively[3,4]. 

The resulting f(Z,C) value is expressed as ntrSXX{1 PVE(k)}, where SXX = n1XX contains covariances and 

                 PVE(k) = n1ZC2/trSXX = trCC/trSXX                              (4) 

is the proportion of the total variance in X explained by the model part ZC for f(Z,C) = X  ZC2 in (3).  

4. Selection of Cardinality 
   For selecting a suitable k value in (3), PVE(k) in (4) can be used. It increases monotonically with k, but (4) is 
normalized with its range [0, 1], which facilitates the choice of the lower limit PVEL defining permissible (4) 
values  PVEL. I thus consider the following steps for selecting a suitable k when PVEL is given:  

[S1] Perform PCA (1) for X with m = 1 (which implies k = p).  
[S2] Set k:= k +1 and perform GSCFA (4). 
[S3] Go back to [S2] if the resulting (4) value is lower than PVEL; otherwise, accept the current solution. 

Here, it should be noted that the number of (common and unique) factors is selected computationally.    
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