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1 Background and problem setting

A widely believed conjecture in machine learning is that generative distributions of real-world high-dimensional

data, such as natural images and audio signals, are concentrated on low-dimensional sub-manifolds. Hence, a major

challenge in the study of generative models is to develop stable learning algorithms for probability distributions

with low-dimensional supports.

We consider the problem of estimating distributions with 1-dimensional piecewise linear supports. To be precise,

suppose that x1, . . . , xn ∈ Rd are drawn according to the model xi = ψ∗(zi) + ξi (i = 1, . . . , n), where {zi}ni=1

are unobserved latent variable that are uniformly distributed on [0, 1], ψ∗ : [0, 1] → Rd is a “decoding” map, and

{ξi}ni=1 are additive noise variables. We assume that ψ∗ is piecewise linear, which means that the support of

noiseless variable x̃i = ψ∗(zi) consists of connected line segments. Observing {xi}ni=1, our problem is to estimate

the true decoding map ψ∗. The following figure shows an illustrative example of the problem.
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2 Method

Our proposed method attempts to minimize the following objective with respect to “embeddings” z1, . . . , zn and

a decoding map ψ:
n∑

i=1

∥xi − ψ(zi)∥22︸ ︷︷ ︸
(A)

+λ1W2(z)︸ ︷︷ ︸
(B)

+λ2R(ψ, z)︸ ︷︷ ︸
(C)

. (1)

• (A) is the reconstruction error of the encoder-decoder output ψ(zi).

• (B) is the (squared) Wasserstein distance between the empirical distribution of {zi} and the uniform distri-

bution over [0, 1].

• (C) is the regularization term that encourages ψ to be a less complex piecewise linear function.

The objective (1) is closely related to some existing methods; Minimizing (A)+ (B) is a special case of Wasserstein

Auto-Encoder [1], while minimizing (A)+ (C) for fixed {zi} can be regarded as piecewise linear regression (see e.g.

[2, 3]). We will discuss the algorithms and their statistical performances through numerical experiments.
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