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The factor modelling approach consists in summarizing the information through a small number of
variables called factors. The quantity of interest is the variance covariance matrix Σ which is decomposed
as

Σ = ΛΛT + Ψ,

where Ψ is the p×p variance covariance matrix of the idiosyncratic variables and Λ is the p×m matrix of
the loading factors. Although the factor model approach aims at reducing the statistical complexity, the
total number of parameters remains significant for large p-dimensional random vectors. As a consequence,
the total number of parameters to estimate in the idiosyncratic variance covariance matrix is O(p2). To
foster sparsity, Bai and Liao (2016) proposed a Lasso/Scad penalization procedure based on a Gaussian
quasi maximum likelihood approach for estimating a sparse idiosyncratic variance covariance matrix.
They derive asymptotic bounds and consistency results for the penalized estimate Ψ̂.

In our study, we provide a finite-sample theoretical analysis of sparse idiosyncratic variance covariance
matrices Ψ together with the conditions to satisfy the support recovery property using the theoretical
framework developed by Loh and Wainwright (2017). To do so, we propose a two-step estimation, where
the statistical criterion is given by

(Λ̃, Ψ̃) = arg min
Λ,Ψ

{Gn(Λ,Ψ)}, with Gn(Λ,Ψ) = 1
2n

(
log(|Σ(Λ,Ψ)|) + tr(ŜΣ(Λ,Ψ)−1)

)
,

Ψ̂ = arg min
Ψ:Ψ�0,g(vec(Ψ))≤R

{Fn(Ψ; Λ̃, Ψ̃) + p(γn, vec(Ψ))}, where

Fn(Ψ; Λ̃, Ψ̃) = vec(Ψ− Ψ̃)′{∇2
vec(Ψ)vec(Ψ)′Gn(Λ̃, Ψ̃)}vec(Ψ− Ψ̃),

where Ŝ is the sample variance covariance estimate and vec(.) is the vectorization operator that stacks the
columns of any matrix on top of one another into a vector. In a first step, both the loading factor matrix
and idiosyncratic matrix are obtained based on a Gaussian maximum likelihood estimator. Conditionally
on these first step estimates, the regularized idiosyncratic matrix corresponds to the solution of a minimum
distance criterion plus the regularizer. This sparse estimator is thus based on a least square type loss
function weighted by the Hessian matrix of the first step Gaussian likelihood function. The regularization
procedure is performed by the regularizer p(γn, .) : Rp2 → R, where γn is the regularization parameter,
which depends on the sample size, and enforce a particular type of sparse structure in the solution Ψ̂ and
R > 0 is a supplementary regularization parameter. Due to the potential non-convexity of this penalty,
we include the side condition g(vec(Ψ)) ≥ ‖vec(Ψ)‖1 with g : Rp2 → R a convex function, and R to
ensure the existence of local/global optima.

Under the restricted strong convexity of the unpenalized loss function Fn(.; Λ̃, Ψ̃) and regularity con-
ditions on the regularizer, we prove non-asymptotic error bounds on the regularized idiosyncratic matrix
estimator. Moreover, based on the primal-dual witness method, we establish variable selection consis-
tency, including the case when the regularizer is non-convex. These theoretical results are supported by
empirical studies.
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