Asymptotic mixed normality of realized covariance in high-dimensions

Yuta Koike

Mathematics and Informatics Center, University of Tokyo

Let us consider d assets traded on a financial market. We model the log-price process of those d assets by a d-dimensional continuous Itô semimartingale $Y = (Y_t)_{t \in [0,1]}$. We denote by Y^i the *i*-th component of Y for every i = 1, ..., d. Suppose that we observe the process Y at the equidistant times $t_h = h/n$, h = 0, 1, ..., n. The aim of this talk is to implement statistical inference for the quadratic covariation matrix $[Y, Y]_1 := ([Y^i, Y^j]_1)_{1 \le i,j \le d}$ based on the observation data $(Y_{t_h})_{h=0}^n$ when n tends to infinity. In this situation, the most canonical estimator for $[Y, Y]_1$ would be the *realized covariance matrix*:

$$\widehat{[Y,Y]}_{1}^{n} := \sum_{h=1}^{n} (Y_{t_{h}} - Y_{t_{h-1}}) (Y_{t_{h}} - Y_{t_{h-1}})^{\top}.$$

We achieve our aim once we derive (an approximation of) the distribution of the estimation error $\widehat{[Y,Y]}_1^n - [Y,Y]_1$. In the low-dimensional setting, i.e. if *d* does not depend on *n*, there is the celebrated theory by [3] which enables us to establish the stable convergence in law of the variables $\sqrt{n} \left(\widehat{[Y,Y]}_1^n - [Y,Y]_1 \right)$ to a mixed normal distribution (see e.g. Theorem 5.4.2 of [4]). In contrast, in the high-dimensional setting, i.e. if *d* diverges as *n* tends to infinity, there seems no theory to approximate the distribution of $\widehat{[Y,Y]}_1^n - [Y,Y]_1$ in a suitable sense so far. In this talk, we fill in this gap by establishing a mixed-normal approximation for probabilities that (the vectorization of) $\sqrt{n} \left(\widehat{[Y,Y]}_1^n - [Y,Y]_1 \right)$ belongs to random sparsely convex polytopes. The proof is based on a variant of the recent high-dimensional central limit theory for sums of independent random vectors developed by [1, 2], where we accommodate the theory to random asymptotic covariance matrices.

References

- [1] Chernozhukov, V., Chetverikov, D. & Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. *Ann. Statist.* **41**, 2786–2819.
- [2] Chernozhukov, V., Chetverikov, D. & Kato, K. (2017). Central limit theorems and bootstrap in high dimensions. *Ann. Probab.* **45**, 2309–2353.
- [3] Jacod, J. (1997). On continuous conditional Gaussian martingales and stable convergence in law. In *Séminaire de probabilitiés XXXI*, vol. 1655 of *Lecture Notes in Math*. Springer, Berlin, New York, pp. 232–246.
- [4] Jacod, J. & Protter, P. (2012). Discretization of processes. Springer.