A note on estimation of the shape of density level sets of star-shaped distributions

大阪経済大・経済 紙屋英彦

ランダムベクトル $x \in \mathcal{X} := \mathbb{R}^p \setminus \{\mathbf{0}\} \ (p \ge 2)$ は,

$$x \sim h(r(x)) dx$$

と分布するとする.ここで $r: \mathcal{X} \to \mathbb{R}_{>0}$ は連続で, $r(cx) = cr(x) \ (x \in \mathcal{X}, \ c \in \mathbb{R}_{>0})$ を満たすとする.また $h: \mathbb{R}_{>0} \to \mathbb{R}_{\geq 0}$ は, $0 < c_0 < \infty$ を満たすとする.ただし $c_0 := \int_0^\infty h(r) r^{p-1} dr$ である.一般性を失うことなく, $c_0 = 1$ となるように $h(\cdot)$ と $r(\cdot)$ が取られているとする.

ここで

$$Z := \{ x \in \mathcal{X} : r(x) = 1 \} \subset \mathcal{X}$$

と定義する. このとき,集合 $\mathcal{Z} := \bigcup_{0 \le c \le 1} cZ \subset \mathcal{X} \cup \{\mathbf{0}\} = \mathbb{R}^p$ は原点に関する星型集合となり, Z は \mathcal{Z} の境界となる. ここで $c \in \mathbb{R}_{>0}$ に対して, $cZ = \{x \in \mathcal{X} : r(x) = c\}$ となる. それゆえ,各 $cZ \subset \mathcal{X}$ $(c \in \mathbb{R}_{>0})$ 上で,密度 h(r(x)) は一定となる: h(r(x)) = h(c) $(x \in cZ)$. このことより h(r(x))dx を星型分布という.また Z をこの星型分布の密度の等高線の "形" と呼ぶ.

特に,正定値行列 Σ に対して $r(x) = \omega_p^{1/p}(\det \Sigma)^{1/(2p)}(x^T\Sigma^{-1}x)^{1/2}$ ($\omega_p := 2\pi^{p/2}/\Gamma(p/2)$ は \mathbb{S}^{p-1} の全体積)と取れば,星型分布は楕円型分布となり,そのときさらに $h(r) = (2\pi)^{-p/2}(\det \Sigma)^{-1/2}\exp[-r^2/\{2\omega_p^{2/p}(\det \Sigma)^{1/p}\}]$ と取れば,多変量正規分布 $N_p(\mathbf{0},\Sigma)$ となる.一般の星型分布では, $r(\cdot)$ (従って Z)の取り方により分布の歪みを, $h(\cdot)$ の取り方により裾の重さを表すことができる.

ここでは、密度の等高線の形 Z の推定を考える.

 $x_1,\dots,x_n\in\mathcal{X}$ は、独立に同一の星型分布 h(r(x))dx に従うとする. $x\sim h(r(x))dx$ の方向ベクトル $u:=x/\|x\|\in\mathbb{S}^{p-1}$ の分布の du (\mathbb{S}^{p-1} の体積要素) に関する密度 f(u) に対し、 $\hat{f}_n(u)=\{C(\eta)/(n\eta^{p-1})\}\sum_{i=1}^nL((1-u^Tu_i)/\eta^2)$ (Hall, Watson and Cabrera (1987), Bai, Rao and Zhao (1988)) を $u_i:=x_i/\|x_i\|\in\mathbb{S}^{p-1}$ $(i=1,\dots,n)$ に基づくカーネル推定量とする.ここで $\eta=\eta_n>0$, $C(\eta):=\eta^{p-1}/\int_{\mathbb{S}^{p-1}}L((1-u^Ty)/\eta^2)du>0$ $(y\in\mathbb{S}^{p-1})$ であり、 $L:\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0}$ はいくつかの条件を満たすとする($L(s)=\exp(-s)$ やL(s)=1(s<1) は条件を満たす).さらに、 $n\to\infty$ のとき、 $\eta_n\to 0$ 、 $n\eta_n^{p-1}/\log n\to\infty$ とする.

ここで、Z の推定量として、

$$\hat{Z}_n := \left\{ \hat{f}_n(u)^{\frac{1}{p}} u : u \in \mathbb{S}^{p-1} \right\}$$

を提案する. このとき \hat{Z}_n は、ハウスドルフ距離 $\delta_H(\cdot,\cdot)$ に関し、 Z の強一致推定量となる: $\delta_H(\hat{Z}_n,Z)\to 0$ a.s.

当日は、シミュレーション結果、簡単な場合のパラメトリックな推定との比較、実データへの適用例も示す.

本報告について詳しくは、Kamiya、H.、A note on estimation of the shape of density level sets of star-shaped distributions. *Communications in Statistics—Theory and Methods*、to appear を参照されたい.