
A Unified Framework of Cross-Lagged Longitudinal Models

Satoshi Usami (University of Tokyo)　　 Kou Murayama (University of Reading)　　
Ellen Hamaker (Utrecht University)

1 Introduction
　 One of the primary interests in longitudinal data analysis is the inference about the reciprocal effects or

causality between variables. To address the reciprocal effects, cross-lagged panel model (CLPM) has been
widely used. However, other recent longitudinal models incorporate cross-lagged relations, such as latent
change score (LCS) model (McArdle & Hamagami, 2001; Usami, Hayes, & McArdle, 2015), autoregressive
latent trajectory (ALT) model (Curran & Bollen, 2001), and (a bivariate version of) stable trait autoregressive
trait and state (STARTS) model (Kenny & Zautra, 2001). In addition, a recent study by Hamaker, Kruiper, &
Grasman (2015) criticized CLPM that it does not represent the actual within-person causal relations over time,
potentially leading to erroneous conclusions regarding reciprocal effects. They instead proposed an alterna-
tive model, random-intercepts CLPM (RI-CLPM). The central aim of this presentation is to provide a unified
statistical framework that clarifies the mathematical and conceptual relationships among those models.

2 Unified Framework
　Assume we are interested in the reciprocal effects between variables X and Y , and let xit and yit be repeated

measures at time t for each individual i. In the unified framework xit and yit for t ≥ 2 can be expressed as:

xit = fxit + c1ϵxit,　 yit = fyit + c1ϵyit, (1)
fxit = [c2(µxt + αxtTxi) + c3rxit] + f ∗x jt,　 fyit = [c2(µyt + αytTyi) + c3ryit] + f ∗y jt, (2)

f ∗x jt = [(1 − c2)(I∗xi + αxtS ∗xi) + (1 − c3)r∗xit] + βx f ∗x j(t−1) + γx f ∗y j(t−1),

f ∗y jt = [(1 − c2)(I∗yi + αytS ∗yi) + (1 − c3)r∗yit] + βy f ∗y j(t−1) + γy f ∗x j(t−1) (3)

First part, which is shown in Equation 1, is a measurement part. Namely, observations are first decomposed
into latent true scores ( fxit and fyit) and errors (ϵxit and ϵyit). c1 is a dummy variable that switches on/off the
measurement error of the model. Second part, which is shown in Equation 2, is a decomposition part mainly
to define trait factors or growth factors incorporated in the model. µxt and µyt are the temporal group means
at each time point, and Txi and Tyi are trait factors that express individual’s stable trait-like deviations from
these means. Trait factors scores (Txi,Tyi)t have a 2 × 1 mean vector 0 and 2 × 2 variance-covariance matrix T,
and these trait factors have factor loadings or weights αxt and αyt. Importantly, this part also has residuals, rxit
and ryit, at time point t. We shall call these residuals non-dynamic residuals. Third part (Equation 3) defined
for t ≥ 2 is a dynamic part. Namely, all terms included in this equation influence forwardly the true scores
at the later time points through the autoregressive and lagged relationships as dynamic processes. In this part,
growth factors I∗ and S ∗ with non-zero means are used instead of trait factors to model latent trajectories. I∗xi
and I∗yi are intercept factors, and S ∗xi and S ∗yi are slope factors. βx and βy are autoregressive parameters, and
γx and γy are cross-lagged parameters. c2 and c3, which appear in both decomposition part and dynamic part,
are dummy variables that define trait factors or growth factors and residuals related to these factors. A model
includes trait factors when c2 = 1, whereas it includes growth factors when c2 = 0. On the other hand, a model
has (non-dynamic) residuals when c3 = 1 whereas it does not have non-dynamic residuals when c3 = 0.
　　 For example, setting c1 = 0, c2 = 1 and c3 = 0 and constraining αxt = αyt = 1 is algebraically equivalent
to RI-CLPM. This model can be further reduced to CLPM by setting αxt = αyt = 0. In the presentation, we will
explain the differences of the ways of interpretation of the cross-lagged effects among models, and also provide
a simulation study that shows existing longitudinal cross-lagged models are generally susceptible to the issue
of improper solutions, even if a model is correctly specified, but we can reduce the risk of improper solutions
by using non-dynamic instead of dynamic residuals.
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