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We develop a new theoretical framework to analyze the generalization error of deep learning,
and derive a new fast learning rate for two representative algorithms: empirical risk minimiza-
tion and Bayesian deep learning. The series of theoretical analyses of deep learning has revealed
its high expressive power and universal approximation capability. Although these analyses are
highly nonparametric, existing generalization error analyses have been developed mainly in a
fixed dimensional parametric model. To compensate this gap, we develop an infinite dimensional
model that is based on an integral form as performed in the analysis of the universal approxi-
mation capability. This allows us to define a reproducing kernel Hilbert space corresponding to
each layer. Our point of view is to deal with the ordinary finite dimensional deep neural network
as a finite approximation of the infinite dimensional one. The approximation error is evaluated
by the degree of freedom of the reproducing kernel Hilbert space in each layer. To estimate a
good finite dimensional model, we consider both of empirical risk minimization and Bayesian
deep learning. We derive its generalization error bound and it is shown that there appears bias-
variance trade-off in terms of the number of parameters of the finite dimensional approximation.
We show that the optimal width of the internal layers can be determined through the degree of
freedom and the convergence rate can be faster than O(1/

√
n) rate.

We define a feature space on the �-th layer. The feature space is a a probability space
(T�,B�,Q�) where T� is a Polish space, B� is its Borel algebra, and Q� is a probability measure on
(T�,B�). Now the input x is a dx-dimensional real vector, and thus we may set T1 = {1, . . . , dx}.
Since the output is one dimensional, the output layer is just a singleton TL+1 = {1}. Based on
these feature spaces, our integral form of the deep neural network is constructed by stacking the
map on the �-th layer fo

� : L2(Q�) → L2(Q�+1) given as

fo
� [g](τ) =

∫
T�

ho
�(τ, w)η(g(w))dQ�(w) + bo�(τ),

where η is an activation function, ho
�(τ, w) corresponds to the weight of the feature w for the

output τ and ho
� ∈ L2(Q�+1 × Q�) and ho

�(τ, ·) ∈ L2(Q�) for all τ ∈ T�+1. Specifically, the first

and the last layers are represented as fo
1 [x](τ) =

∑dx

j=1 h
o
1(τ, j)xjQ1(j) + bo1(τ), and fo

L[g](1) =∫
TL

ho
L(w)η(g(w))dQL(w) + boL where we wrote ho

L(w) to indicate ho
L(1, w) for simplicity. Then

the true function fo is given as fo(x) = fo
L◦fo

L−1◦· · ·◦fo
1 (x).We want to approximate this infinite

dimensional model by a finite dimensional one which is defined by using W (�) ∈ R
m�+1×m� as

f∗
� (g) = W (�)η(g) + b(�) (g ∈ R

m� , � = 1, . . . , L), f∗(x) = f∗
L ◦ f∗

L−1 ◦ · · · ◦ f∗
1 (x).

Let the output of the �-th layer be F o
� (x, τ) := (fo

� ◦ · · · ◦ fo
1 (x))(τ). We define a reproducing

kernel Hilbert space corresponding to the �-th layer (� ≥ 2) by introducing its associated kernel
function k� : R

dx × R
dx → R as

k�(x, x
′) :=

∫
T�

η(F o
�−1(x, τ))η(F

o
�−1(x

′, τ))dQ�(τ).

Let the degree of freedom be N�(λ) =
∑∞

j=1

μ
(�)
j

μ
(�)
j +λ

for λ > 0 where μ
(�)
1 ≥ μ

(�)
2 ≥ . . . be the

eigenvalues of the kernel in L2(PX).
Theorem. Under suitable conditions such as ‖ho

�(τ, ·)‖L2(Q�) ≤ R (∀τ, �), there exist constants
C1, C2 > 0 such that, if m� ≥ C1N�(λ�) log (N�(λ�)) (� = 2, . . . , L), then, for any λ� > 0 (� =
2, . . . , L), it holds that

‖f̂ − fo‖2L2(PX) ≤ C2

⎡⎣( L∑
�=2

√
λ�

)2

+
1

n

L∑
�=1

m�m�+1 log (n)
2

⎤⎦
with high probability. By balancing the first and second terms, we obtain a fast learning rate.


