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Nonresponse weighting adjustment using propensity score (PS) is a popular tool for handling
unit nonresponse. However, including all the auxiliary variables into the propensity model can
lead to inefficient estimation and the consistency is not guaranteed if the dimension of the
covariates is large. For the PS setup, let Y is a scalar response and X is a p-dimensional vector
of covariates. Y is subject to missingness and X is fully observed. δ is the indicator function
of observing Y . Suppose we are interested in estimating parameter θ ∈ Θ, which is the unique
solution to the population estimating equation E {U(θ;X,Y )} = 0. Furthermore, we define
the propensity score for the i-th observation as Pr(δi = 1|xi) = π(φ;xi) = G

(
xTi φ

)
, where

G : R → [0, 1] is a known distribution function and φ = (φ1, φ2, . . . , φp)
T is a p-dimensional

unknown parameter. However, when φ is sparse, that is, φ contains many zero values, the MLE
often involves large variance and fails to be consistent

To formulate our proposal, we first introduce a latent variable z, which indicates nonzero
elements of φ. To account for the sparsity of the response model, we assign the Spike-and-Slab
Gaussian mixture prior for φ, denoting as p(φ | z). Assign independent Bernoulli prior for
z, denoting as p(z) . Let L1(φ|x, δ) be the likelihood of φ obtained under the assumption of
independence. Then, our proposed Bayesian sparse propensity score (BSPS) method can be
described as following two steps:

Step 1: Generate z∗ from the marginal posterior distribution of z given x and δ.

Step 2: Generate θ∗ from an approximate posterior distribution of θ given the z∗ generated
from Step 1.

To generate z∗ in Step 1 efficiently, the data augmentation algorithm can be applied. That
is, the marginal posterior distribution of z given x and δ can be obtained by iterating the
following two steps until convergence:

I-step: Given φ∗, generate z∗ from

z∗ ∼ p(z|x, δ, φ∗) =
L1(φ

∗|x, δ)p(φ∗|z)p(z)∫
L1(φ∗|x, δ)p(φ∗|z)p(z)dz

=
p(φ∗|z)p(z)∫
p(φ∗|z)p(z)dz

= p(z|φ∗).

P-step: Given z∗, generate φ∗ from

φ∗ ∼ p(φ|x, δ, z∗) =
L1(φ|x, δ)p(φ|z∗)∫
L1(φ|x, δ)p(φ|z∗)dφ

.

I-step can be explicitly expressed as a Bernoulli distribution. However, the normalizing
constant in P-step (1) is not tractable. Thus, we propose to use the Approximate Bayesian
Computation method to replace the original likelihood function of φ. And, in Step 2, we apply
the similar technique due to no explicit likelihood function of θ.

Model consistency and asymptotic normality are established. The finite-sample performance
of the proposed method is investigated in limited simulation studies, including a partially sim-
ulated real data example from the Korean Labor and Income Panel Survey.


