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Let X1, . . . , Xn be a sample drawn from a d variate density f . Consider the density esti-

mation problem, where we aim at obtaining a density estimator with local adaptation. Also

we expect the estimator to have a robustness property in some sense. To do this we utilize

a parametric d variate density g(x, θ), where θ ∈ Θ ⊂ Rp. Estimation is implemented at a

target point t and localization is induced by using a kernel K(z) which is a smooth unimodal

integrable function symmetric around z = 0.

For estimation of f(t) at the target point t, an estimator of θ is defined as

θ̂λ(t) = argmax
θ∈Θ

∫
Rd

ρλ(t, x, θ)dFn(x),

where Fn is the empirical distribution function and

ρλ(t, x, θ) =

(
λ+ 1

λ

)
K

(
x− t

h

)
{g(x, θ)λ − 1} −

∫
Rd

K

(
s− t

h

)
g(s, θ)λ+1ds (1)

with 0 < λ ≤ 1 and the bandwidth h > 0. This ρλ(t, x, θ) is a localized version of a loss

function based on the Bregman divergence associated with the Box-Cox transformation. The

additional parameter λ represents the power in the Box-Cox transformation and the divergence

with λ = 0 reduces to the Kullback-Leibler divergence. The robustness property is expected to

hold for small positive λ.

Let g(t, θ̂λ(t)) be a pilot estimator of f(t) obtained by using local estimator θ̂λ(t). Our

proposed estimator of f(t) is its normalized version defined as

f̂(t) =
g(t, θ̂λ(t))∫

Rd

g(s, θ̂λ(s))ds

.

The behavior of f̂ is evaluated by the power divergence risk, with respect to which f̂ asymptot-

ically, as n and h both increase, performs better than the usual plug-in parametric estimator

g(·, θ̂λ), where θ̂λ is a robust estimator of θ obtained through the global loss optimization:

θ̂λ = argmax
θ∈Θ

∫
Rd

ρλ(x, θ)dFn(x).

Here ρλ(x, θ) is a global version of ρλ(t, x, θ) in (1) with eliminating the kernel localization

(or h → ∞.) This means that there is a benefit of using the localized divergence: such a

localization always helps even in a robust setting.


