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In this study, we consider a problem of estimating the state of nonlinear stochastic dynamical
systems from noisy observations. This problem arises in many application areas such as target
tracking, navigation and data assimilations. The estimation problem is solved by computing
the conditional probability of the state, conditioned on a sequence of observations. Given
the observations up to time t, the problem is called filtering if we compute the conditional
probability at time t; it is called smoothing if the conditional probability at any time before t is
to be computed [1].

The filtering and smoothing problems can be solved by the forward and backward recursive-
Bayesian algorithms, respectively. These algorithms involve solving partial differential equa-
tions (PDEs) the conditional probability densities satisfy. For linear Gaussian systems, the first
two moments are sufficient for characterizing the conditional densities. Thus the PDEs are re-
duced to finite-dimensional ordinary differential equations (ODEs), i.e., the Kalman filter and
smoother. For general nonlinear systems, however, the conditional probability densities cannot
fully be characterized by finite number of moments, thereby the PDEs must either be numer-
ically solved (including Monte Carlo approaches), or be approximated by finite dimensional
ODEs; we will develop the later approach.

Here, we apply the projection method to the backward algorithm, yielding a novel finite dimen-
sional approximation of nonlinear smoother which we call the projection smoother. Combining
with the projection filter developed in [2], we formulate a finite dimensional approximation for
the forward and backward algorithms, based on the projection method. We present a numerical
study for a particular case of double-well potential system, and compare in estimation perfor-
mance between our method and other methods based on Gaussian approximations that include
the extended Kalman scheme.
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