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Modern data analysts often suffer from the high dimensionality, where the data have

larger dimension p than the sample size n. One of the most popular approach in the

context of linear regression would be the lasso proposed by Tibshirani (1996). Recently,

a large number of studies have supported its utility under the assumption that only a

subset of covariates is relevant to responses. Though this sparsity assumption is natural

and appropriate for high dimensional data, it is not enough for capturing more complex

structures among covariates. In many cases, data analysts have a prior knowledge about

covariates such as the order and (dis)similarity. To utilize such a knowledge, the adaptive

generalized lasso (AGL, hereafter) given as

argmin
β∈Rp

1

2n
∥y −Xβ∥22 + ∥Λ1β∥1 + ∥Λ2Cβ∥1, (1)

is studied in this talk. This is an adaptive version of generalized lasso proposed by

Tibshirani and Taylor (2012). The matrix C ∈ Rq×p is known and enables to handle

complex structures among covariates. For instance, when (C)i,i = 1, (C)i,i+1 = −1 for

i = 1, . . . , p − 1 and (C)j,k = 0 otherwise, an order of covariates is utilized. For a given

graph with edges E1, . . . , Eq, when (C)i,j = 1, (C)i,k = −1 for Ei = (j, k) and (C)i,ℓ = 0

otherwise, then similarities among covariates on the graph are utilized. The matrices

Λ1 = λ1diag(w11, . . . , w1p) and Λ2 = λ2diag(w21, . . . , w2q) denote weights for β and Cβ,

respectively. These weights are calculated via the non-adaptive generalized lasso as

argmin
β∈Rp

1

2n
∥y −Xβ∥22 + τ∥Dβ∥1, D =

(
Ip
C

)
. (2)

An important question is how AGL given in (1) with some weights via (2) performs

under the high dimensionality. This talk shows that AGL has the consistency and support

recovery if the matrix C satisfies some conditions. Some examples of C meeting them

are also introduced.
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