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In various applications, we encounter problems of estimating the unobserved entries
of a matrix from the observed entries. For example, in the famous Netflix problem, we
have a matrix of movie ratings by users and aim to predict the preference for movies of
each user for recommendation. This problem is called the matrix completion problem
and many studies have investigated its theoretical properties and developed efficient
algorithms.

In the matrix completion problems, the low-rank property of the underlying matrix
plays a central role. Indeed, existing matrix completion algorithms succeed in estimat-
ing the unobserved entries by assuming the low-rankness. Note that low rank matrices
have sparse singular values since the rank of a matrix is equal to the number of its
nonzero singular values. The sum of singular values of a matrix is called the nuclear
norm and employed by many existing algorithms for regularization.

In practice, the data matrix often contains observation noise and we aim to recover
the true underlying matrix. If the data matrix is fully observed with the Gaussian
observation noise, then the matrix completion problem reduces to the estimation of
the mean matrix parameter of a matrix-variate normal distribution. For this problem,
[1] developed an empirical Bayes estimator and proved that its minimaxity under the
Frobenius loss. Based on this idea, [2] developed singular value shrinkage priors as
a natural generalization of the Stein prior. The singular value shrinkage priors are
superharmonic and the Bayes estimators based on them are minimax estimators with
similar properties to the Efron–Morris estimator.

In this study [3], we develop an empirical Bayes (EB) algorithm for matrix com-
pletion. The EB algorithm is a natural extension of the Efron–Morris estimator and
based on the following hierarchical model:

M ∼ Np,q(0, Ip,Σ),

Y | M ∼ Np,q(M,σ2Ip, Iq).

Namely, we assume that each row vector m⊤
i ∈ Rq of M = (m1, · · · ,mp)

⊤ ∈ Rp×q

has the distribution mi ∼ Nq(0,Σ) independently. Since only part of the entries of Y
are observed, we use the EM algorithm to estimate the hyperparameters Σ and σ2.
The EB algorithm does not require heuristic parameter tuning other than tolerance.
Numerical experiments demonstrate the effectiveness of the EB algorithm compared
with existing algorithms. Specifically, the EB algorithm works well when the difference
between the number of rows and columns is large. Application to real data also shows
the practical utility of the EB algorithm.
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