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A Kernel-type density or regression estimator does not produce constant estimator variance over
domains. To correct this problem, Nishida and Kanazawa (2015) and Nishida (2017) proposed a
variance-stabilizing (VS) bandwidth for a local linear regression estimator. In this presentation,
we show that variance-stabilization is possible using the bayesian approach with a conjugate prior
in the case of the kernel density estimator.

Let X1, ..., Xn be the i.i.d. observations from an unknown density fX(·) to be estimated. The
kernel density estimator is defined by
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where K(·) is a nonnegative symmetric kernel function and h is a bandwidth satisfying h → 0 and
nh → ∞ as n → 0. To introduce the bayesian approach, we denote π(h) to be the pdf over all
possible values of h and the posterior distribution of h given X1, ..., Xn is defined as

π̂(h|X1, ..., Xn)=
f̂h(x)π(h)∫
f̂h(x)π(h)dh

. (2)

The Bayes estimator for the local variable bandwidth h(x) in (1) is the posterior mean of (2) at
x given by h∗(x) =

∫
hπ̂(h|X1, ..., Xn, x)dh if the squared loss function is employed. One possible

approach to calculate the posterior mean of (2) is by assuming conjugacy in the distribution of h.
Gangopadhyay and Cheung (2002) supposed that the kernel function is Gaussian and the prior of
h is given by the inverse gamma distribution written as
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)
, α > 0, β > 0, h > 0. (3)

They reported the closed form of the posterior mean of h(x) as,
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. (4)

To estimate the VS bandwidth for (1), the hyper parameters α and β in (3) should be determined
to satisfy h∗(x) = fX(x)C at every value of x, where C is a positive constant, simultaneously

satisfying the condition α > 0 and β → ∞, nβ− 1
2 → ∞ as n → ∞ in Kulasekera and Gallagher

(2010). In the upcoming presentation, we will show results about the hyperparameters to be
determined and also provide simulation. Moreover, we will present ideas of other possible bayesian
VS bandwidth estimation procedures.
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