On estimation of intrinsic stationary random fields

Tohoku University Yoshihiro YAJIMA

We propose estimators of isotropic intrinsic stationary random fields by log-periodogram regression and derive their asymptotic properties. These are extensions of the results for stationary and nonstationary long-memory time series models given by Robinson(1995. Ann. Statist.) and Velasco(1999. J. Econometrics) to random fields.

Let $\{X(t); t \in \mathbb{R}^d\}$ be a random field. If for any fixed $h(\in \mathbb{R}^d)$, the random field $\{Z_h(t); t \in \mathbb{R}^d\}$ defined by

$$Z_{\boldsymbol{h}}(\boldsymbol{t}) = X(\boldsymbol{t} + \boldsymbol{h}) - X(\boldsymbol{t}),$$

is stationary, $\{X(t); t \in \mathbb{R}^d\}$ is called an intrinsic stationary random field. Then the variogram $\gamma(h)$ is defined by

$$\gamma(\mathbf{h}) = \text{Var}(X(\mathbf{t} + \mathbf{h}) - X(\mathbf{t}))$$

and under some assumptions, it has the spectral representation,

$$\gamma(\mathbf{h}) = \int_{\mathbf{R}^d} \frac{1 - \cos((\boldsymbol{\omega}, \mathbf{h}))}{(2\pi)^d} g(\boldsymbol{\omega}) d\boldsymbol{\omega}$$

where $g(\boldsymbol{\omega})$ is positive and satisfies

$$\int_{\mathbf{R}^d} \frac{\mid\mid \boldsymbol{\omega}\mid\mid^2}{1+\mid\mid \boldsymbol{\omega}\mid\mid^2} g(\boldsymbol{\omega}) d\boldsymbol{\omega} < \infty.$$

Hereafter for simplicity we assume d=2 and the sampling sites are

$$s_{qr} = (q, r), \ q, r = 1, \dots, n.$$

The tapered discrete Fourier transform and the periodogram are defined by

$$w_p^T(\omega_{j_1j_2}) = \frac{1}{2\pi \sum_{t=1}^n h_t^2} \sum_{q,r=1}^n h_q h_r X(s_{qr}) \exp(-i(\omega_{j_1j_2}, s_{qr}))$$
$$I_p^T(\omega_{j_1j_2}) = |w_p^T(\omega_{j_1j_2})|^2$$

where

$$\omega_{j_1j_2} = (\omega_{j_1}, \omega_{j_2}) = (\frac{2\pi j_1}{n}, \frac{2\pi j_2}{n}), -\frac{n}{2} < j_1, \ j_2 \le \frac{n}{2}$$

and h_t is a positive taper symmetric around n/2 with $\max_t h_t = 1$ and of order p. We assume that $g(\lambda_1, \lambda_2)$ depends only on $\lambda_1^2 + \lambda_2^2$, that is, isotropic and $g(\lambda_1, \lambda_2)/(\lambda_1^2 + \lambda_2^2)^{-(H+1)}$ with 0 < H < 1 is bounded and bounded away from 0. We apply a log-periodogram regression to $I_p^T(\omega_{j_1j_2})$ to estimate H. Then we derive its asymptotic properties and conduct some computational experiments that compare the performance of this estimator and that of estimators proposed previously by other authors.