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1. Penalized vs. Unpenalized Sparse Regression     
Sparse regression refers to the modified multiple regression which provides a coefficient vector β including a 

number of zeros. For n-observations × (p+1)-variables column-centered block data matrix [X, y] with y an n × 1 
dependent variable vector, the existing sparse regression procedures can be formulated as 

                           minβ f(β) + λ Pen(β) ,                                    (1) 

where f(β) = n−1||y − Xβ′||22 is the regression loss function, while Pen(β) is a function penalizing for β to have 
nonzero elements with λ ≥ 0 a penalty weight. A popular penalty function is Pen(β) = ||β||1 in Lasso. In contrast 
to such penalized approaches, we propose an unpenalized sparse regression procedure, which is formulated as 

                        minβ f(β) subject to β including q zeros                             (2) 

with q a pre-specified integer. We call (2) cardinality-constrained regression (CCREG). 
   An advantage of CCREG over (1) is that the tuning parameter q in (2) is restricted to an integer within the 
range [0, p−1], thus we can easily investigate suitability for all tuning parameter (q) values. On the other hand, 
that is difficult in (1), since λ can take any positive real value.  

2. Cardinality-Constrained Regression 
Using sYY = n−1y′y, sXY = n−1X′y, and SXX = n−1X′X, function f(β) can be rewritten as f(β) = sYY − 2sXY′β + 

β′SXXβ. Followig (2002, (1), (11b)), we see that f(β) is majorized by 

                             m(β) = c + α||b − β||22  :                                   (3) 

f(β) ≤ m(β). Here, α is the maximum eigenvalue of SXX, b = βc − α−1(SXXβc − sXY), with βc the current β, and c  
a constant with respect to β and defined so as to satisfy m(βc) = f(βc). We can see that (3) is minimized when β is 
updated as  

βu = the vector b whose q elements of the smallest absolute values are replaced by zeros,          (4) 

for given b. This fact, f(β) ≤ m(β), and m(βc) = f(βc) imply f(βu) ≤ m(βu) ≤ m(βc) = f(βc). Hence updating β in this 
way will increase f or keep it equal. It leads to the CCREG algorithm, in which βc is initialized, then setting b = 
βc − α−1(SXXβc − sXy) and updating β as (4) are alternately replicated, until convergence is reached.  
   Minimization (2) is performed for each of q = 1, … , p−1. Among the resulting solutions β̂ , we select the one 
with a suitable q. It can be given by q* = argminK BIC(q) with BIC(q) = nlog f( β̂ ) + (p − q + 1)log n. 

3. Numerical Comparisons with Lasso 
   We synthesized 200 data matrices [X, y] (100 × 21) with y = Xβtrue + σe. Here, βtrue includes qtrue zeros with 
qtrue ∈ [5, 15] and each nonzero element of βtrue is drawn from the uniform distribution for [0.1, 0.9] or that for 
[−0.9, −0.1]. Each element of e and each row of X are sampled from normal distributions N1(0, 1) and N20(0, 
V∆V′), respectively, where V ∈ 20 × 20 random orthonormal matrices and ∆ = diag{δ1, … , δ20}, with δ1 = 10, 
δ20 = 2, and the remaining δk chosen randomly from [2,10]. The error level σ is chosen so that ||σe||2/||y||2 = 0.25. 
The synthesized data were analyzed by CCREG and Lasso regression. Here, we also used BIC for Lasso: the 
solution with λ = argminλ ∈ Λ BIC(λ) was selected, where Λ = {0.01, 0.02, … , 9.99, 10} thus covering a wide 
range of possible sparsenesses of β.  

As a result, CCREG was found to recover βtrue better than Lasso regression, with the averages of p−1|| β̂ − 
βtrue||1 being .085 (sd = .045) for CCREG and .094 (sd = .043) for Lasso. Further, CCREG/BIC tended to 
overestimate q (by 1.2 on average), while Lasso/BIC tended to underestimate it (by −1.9 on average). 

4. Conclusions 
With CCREG it is easier to find the most suitable value of the tuning parameter, and it outperforms Lasso 

regression in the recovery of sparse coefficients.   
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