Differential geometric properties of textile plot

University of Tokyo Tomonari Sei Osaka Prefecture University Ushio Tanaka

Abstract

The textile plot is a method for data visualization proposed by Kumasaka and Shibata (2008), which transforms a data matrix to draw a parallel coordinate plot. From a differential geometric point of view, we investigate a set of matrices induced by the textile plot, which we call the textile set.

Preliminaries and results

We define the textile set by a set of matrices induced by the textile plot. We will use bold uppercase letters for matrices and bold lowercase letters for column vectors.

Let $\mathbf{X} = (\mathbf{x}_1, \ldots, \mathbf{x}_p) \in \mathbb{R}^{n \times p}$ be a data matrix of n individuals and p variates, where each \mathbf{x}_i is a column vector. For example, imagine a data of characteristics of n students in a school. Then the first column of \mathbf{X} may represent age, the second is height, the third is weight, and so forth. Note that, in each column, every element has the common unit ([years], [cm], [kg], etc.). For simplicity, we assume that the data matrix has no missing value and that each variate is numeric. Each column of \mathbf{X} is assumed to be non-degenerate. In the following, without loss of generality, we assume that the data is scaled: $\mathbf{x}'_j \mathbf{1}_n = 0$ and $\|\mathbf{x}_j\| = 1$, where \mathbf{x}' is the transpose of \mathbf{x} , $\|\mathbf{x}\| = (\mathbf{x}'\mathbf{x})^{1/2}$ is the Euclidean norm, and $\mathbf{1}_n = (1, \ldots, 1)' \in \mathbb{R}^n$.

The textile plot generates another matrix $\boldsymbol{Y} \in \mathbb{R}^{n \times p}$ from \boldsymbol{X} by location and scale transformations as follows: The matrix $\boldsymbol{Y} = (\boldsymbol{y}_1, \dots, \boldsymbol{y}_p)$ is defined by $\boldsymbol{y}_j = b_j \boldsymbol{x}_j, j = 1, \dots, p$, where $(b_1, \dots, b_p)'$ is the unit eigenvector corresponding to the maximum eigenvalue of the sample correlation matrix $(\boldsymbol{x}'_i \boldsymbol{x}_j)_{i,i=1}^p$.

Definition (Textile set). Let *n* and *p* be positive integers. The *texttile set* $T_{n,p}$ is defined as a matrix $\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_p) \subset \mathbb{R}^{n \times p}$ satisfying

$$\exists \lambda \in \mathbb{R} \quad \forall i \in \{1, \dots, p\} \quad \sum_{j=1}^{p} \boldsymbol{y}_{i}' \boldsymbol{y}_{j} = \lambda \|\boldsymbol{y}_{i}\|^{2}, \sum_{j=1}^{p} \|\boldsymbol{y}_{j}\|^{2} = 1$$

Here let us state our results with small p only. In fact, it is possible to generate the case of low-dimensional p to that of high-dimension. Our observation is the following:

Theorem. $T_{n,1} = \mathbb{S}^{n-1}$, namely $T_{n,1}$ is (n-1)-dimensional unit sphere of \mathbb{R}^n , and $T_{n,2}$ is the cup of certain manifolds, each of which is diffeomorphic to $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$.