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Abstract

We develop a new structure to model the correlation between an asset’s return and its volatility in stochastic
volatility models. This correlation is often referred to as the leverage effect in the literature and is considered
to be negative so that a negative shock in a stock price increases its volatility. While this relation is intuitive
and is followed by a plethora of economic reasoning, empirical evidence suggests that most individual stocks
have zero correlation and thus no leverage effect. Therein lies the leverage effect puzzle. In this paper, we
develop a nonlinear generalization of the leverage effect, or rather the leverage function, within a stochastic
volatility setting. We adopt Hermite polynomials as the orthogonal basis of the leverage function and estimate
the parameters via particle learning, a sequential Monte Carlo method when the sufficient statistics of the
parameters are known. However, for the model of interest and in most complex nonlineiar/non-Gaussian
models, the sufficient statistics are unknown. For this reason, we develop a novel and flexible particle learning
algorithm using auxiliary variables. Examining 682 stocks that composite the S&P500, NASDAQ, and Nikkei
225, we find four thirds of the stocks to exhibit complex volatility structures. We further the analysis by
examining whether there are clear traits in which stock have more complex volatility structures. We find
evidence that country and few sectors to have an effect on the volatility structure.
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1 INTRODUCTION
In the field of finance and economics, volatility of financial assets has been investigated with great scrutiny to
further understand the mechanics and structure of price movement. One aspect of volatility that has gathered
especial interest recently is the leverage effect. The term leverage refers to an economic interpretation given
by Black (1976) and Christie (1982). The idea is that, when a asset’s price declines, the company’s relative
debt increases and thus is “leveraged”, making the company relatively riskier and therefore more volatile. The
different interpretations have been investigated and compared in Bekaert and Wu (2000), for example. In this
paper, we estimate the SV model with nonlinear leverage function by particle learning with auxiliary variables.
We will define the SV model with nonlinear leverage function in Section 2 and particle learning with auxiliary
variables in Section 3. Section 4 will present the empirical study where we apply our model to daily returns of
all stocks that compose the NASDAQ100, S&P500, and Nikkei 225.

2 STOCHASTIC VOLATILITY MODEL
WITH LEVERAGE FUNCTION

The SV model is a state space model with observation noise εt and state noise ηt . Both εt and ηt are mutually
and serially independent in this model represented by the off diagonal elements in the covariance matrix being
zero. Yu (2005) compares two types of asymmetric SV models in order to reflect the leverage effect in the
model. The widely used asymmetric SV model is the SV model with assumption of correlation between εt and
ηt , such as {

yt = exp
( xt

2

)
εt ,

xt+1 = µ +βxt +ηt ,

[
εt
ηt

]
∼ N

([
0
0

]
,

[
1 ρτ

ρτ τ2

])
, (2.1)

where ρ is the correlation between the observation noise εt and state noise ηt . This model allows for a
contemporaneous dependence in the variance. Then, setting ut ∼N (0,1), the state noise ηt can be rewritten as

ηt = ρτεt +
√

1−ρ2τut (2.2)

hence, the asymmetric SV model (2.1) can be rewritten as a Gaussian nonlinear state space model with uncor-
related observation noise ut and state noise εt such as{

yt = exp
( xt

2

)
εt ,

xt+1 = µ +βxt +φεt +ωut ,

[
εt
ut

]
∼ N

([
0
0

]
,

[
1 0
0 1

])
, (2.3)

where φ = ρτ , and ω =
√

1−ρ2τ . This model assumes linear correlation, yet the assumption is not founded
in evidence but in convenience. Therefore we extend the model to include nonlinear leverage. Following
Hansen, Huang and Shek (2011), we use Hermite polynomials to construct the leverage function. Then the k-th
order Hermite polynomial Hk(z) is defined as

Hk(z) = (−1)k exp
(

z2

2

)
dk

dzk exp
(
− z2

2

)
. (2.4)

The Hermite polynomial has many desirable factors such as:

1. Expectation: When z follows a random distribution with zero expected value and unit variance, the ex-
pected value of the Hermite polynomial is equal to zero for any k. In other words,

E(Hk(z)) =
∫ ∞

−∞
Hk(z)p(z)dz = 0, z ∼ N(0,1)
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where p(z) is the probability density function of the standard normal distribution.

2. Orthogonality: The Hermite polynomial is orthogonal with respect to the weight function ϕ(x)∝ exp(− x2

2 )
such as p(z). So thus

E(H j(z)Hk(z)) =
∫ ∞

−∞
H j(z)Hk(z)ϕ(z)dz =

{
n! (k = j)
0 (k ̸= j)

Given the above properties of the Hermite polynomials, they can be orthogonal basis of the Hilbert space of
leverage functions such that ∫ ∞

−∞
|ℓ(z)|2ϕ(z)dz < ∞. (2.5)

Thus we can approximate ℓ(εt) by

ℓk(εt)≡ φ1H1(εt)+ · · ·+φkHk(εt), (2.6)

when k is sufficiently large.
Finally, the SV model with k-th nonlinear leverage function is defined as{

yt = exp
( xt

2

)
εt ,

xt+1 = µ +βxt + ℓk(εt)+ωut ,

[
εt
ut

]
∼ N

([
0
0

]
,

[
1 0
0 1

])
, (2.7)

3 PATICLE LEARNING WITH AUXILIARY
VARIABLES

Generally in econometrics, parameters of the model are usually unknown and are of interest. When a state space
model depends on unknown but fixed parameters θ ,{

yt ∼ p(yt |xt ,θ)
xt ∼ p(xt |xt−1,θ)

(3.1)

we need to evaluate the posterior distribution p(θ |y1:t) given the observations y1:t . In the framework of particle
filtering, p(θ |y1:t) is sequentially updated as new observations arrive. This is called particle learning. The
particle learning algorithm is defined as follows. Let {z(i)t = (x(i)t ,θ (i)

t )}N
i=1 and {z̃(i)t = (x̃(i)t , θ̃ (i)

t )}N
i=1 denote

particles jointly generated from p(xt ,θ |y1:t−1) and p(xt ,θ |y1:t) respectively. Then the particle approximation of
the Bayesian learning process is given by

p(zt |y1:t−1)≃
1
N

N

∑
i=1

p(zt |z̃(i)t−1), (3.2)

p(zt |y1:t)≃
N

∑
i=1

ω(i)
t δ (zt − z(i)t ), ω(i)

t =
p(yt |z(i)t )

∑N
i=1 p(yt |z(i)t )

. (3.3)

The particle learning algorithm by Carvalho, Johannes, Lopes and Polson (2010) learns the parameters by
updating the sufficient statistics of the parameter distribution, denoted by st , via the recursion map, S (·).In this
paper, we use particle learning to estimate the SV model with nonlinear leverage function. In the case of adap-
tion to the SV model, the parameters of the SV model are defined as θ = (γ,ω2) where γ ′ = [µ β φ1 ... φk].
In this context, θ is sampled from the conditional posterior

γ|ω2 ∼ Nk+2(bt ,ω2A−1
t ), ω2 ∼ inverseGamma(ct ,dt), (3.4)
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where the sufficient statistics st = (At ,bt ,ct ,dt) are computed by the following recursion

At = At−1 +ZtZ′
t , bt = A−1

t (At−1bt−1 + xtZt), ct = ct−1 +
1
2
, dt = dt−1 +

(xt −Z′
t bt−1)

2

2(1+Z′
t A

−1
t−1Zt)

, (3.5)

where Z′
t = [1 xt−1 H1(εt−1) ... (k!)−1/2 Hk(εt−1)]. While the above method is useful, when the sufficient

statistic is unknown or hard to calculate, it becomes extremely difficult to compute the unknown parameters.
According to Pitt and Shephard (1999), those filtering method based on SIR provides good estimations of state
variables and parameters where the model is a good approximation to the data and the conditional densities
p(yt |xt) are reasonably flat in xt . They point out two weaknesses of the algorithm. Firstly, when there is
aberrant observation, the SIR method cannot adopt precisely so the state variables would underestimate even
when N is large. In this case, the variability of observation values would be increased and that reduces the
accuracy of resampling because it is based on weights by the likelihood. Secondly, the degeneration of particles
are a general problem which occurs when the likelihood is similar at each time. It causes poor tail representation
in the prediction density because the particles placed on the tails are resampled by similarly low weights each
time that the weights increasingly reduces to zero. As a result, the posterior degenerates to a few points. For
those problems, we adopt the auxiliary filter by Pitt and Shephard (1999) in our particle learning algorithm. This
method divides the resampling procedure into two resampling processes, which at first resamples like usual and
then resamples via auxiliary variable k. The first resampling is defined as

p(x̃t |y1:t)≃
N

∑
k=1

ω̃(k)
t δ (xt − x(k)t ), ω̃(k)

t =
p(yt |x(k)t )

∑N
k=1 p(yt |x(k)t )

(3.6)

where k is an index and x(k)t is the mean, the mode, or some other likely value associated with the density of
p(xt |xt−1). Weights ω̃(k)

t are the first stage weights. The second resampling is defined as

p(xt |y1:t)≃
N

∑
i=1

ω(i)
t δ (xt − x(i)t ), ω(i)

t =

p(yt |x(i)t )

∑N
i=1 p(yt |x(i)t )

p(yt |x(k)t )

∑N
k=1 p(yt |x(k)t )

(3.7)

where weights ω(k)
t are the second stage weights. This divided process softens the effect of outliers because

the second stage resampling would be much less variable than the original SIR resampling. Moreover the first
stage resampling is based on the current observation value so that good particles are propagated forward. The
algorithm of particle learning with auxiliary variable k is summarized as follows.

ALGORITHM: PARTICLE LEARNING WITH AUXILIARY VARIABLES

Step 0: Sample the starting values of N particles {z(i)0 }N
i=1 from p(z0).

Step 1: Resample {z̃(i)t+1}N
i=1 from z(i)t = (xt ,st ,θ)(i) with weights ω̃t+1 ∝ p(yt+1|z(k)t ) such that ∑N

i=1 ω̃(i)
t =

1.

Step 2: Propagate x̃(i)t to x̃(i)t+1 via p(xt+1|z̃(i)t+1,yt+1).

Step 3: Resample {x(i)t+1}N
i=1 from {x̃(i)t+1}N

i=1 with weights ωt+1 ∝
p(yt+1|z̃(i)t )

p(yt+1|z̃(k)t )

such that ∑N
i=1 ω(i)

t = 1.
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Step 4: Update sufficient statistics s(i)t+1 = S (s(i)t ,x(i)t+1,yt+1).

Step 5. Sample θ (i) from p(θ |s(i)t+1).

Finally, we adopt the particle filter with auxiliary variable to the SV model with nonlinear leverage function.
Updating sufficient statistics st and sampling parameters θ are calculated following (3.4) and (3.5).

For model selection, in the framework of particle filtering, we select models based on marginal likelihoods
and this can be calculated directly in the filtering procedure from each particle’s likelihood. For example, for
model M, the marginal likelihood p(y1:t |M) is

p(y1:t |M) =
t

∏
j=1

p(y j|y1: j−1,M).

Then, it can be approximated by N particles such as

p(y1:t |M)≃ 1
N

t

∏
j=1

pN(yt |y(i)t−1,M), (3.8)

where

p(yt |yt−1,M)≃
N

∑
i=1

p(yt |y(i)t−1,M) = pN(yt |y1:t−1,M).

4 EMPIRICAL STUDY

4.1 Results from Particle Learning
In the empirical study, we use data from the major equity markets; Nikkei225, S&P500, and NASDAQ100 in
order to compare the difference in volatility structure between country and markets. We use daily stock closing
prices of all stocks that compose the three indexes from the beginning of 2004 to the end of 2013. 1. Since some
of the stocks weren’t listed for the time period, they were omitted from the analysis. A total of 683 stocks were
analyzed with 198 stocks from Nikkei225, 417 stocks from S&P500, and 68 stocks from NASDAQ100. We use
an asset’s return such as,

yi,t = 100 × (lnRi,t − lnRi,t−1),

where Ri,t is a closing price of stock i at term t. We applied each stock return data to the SV model with
k = 1 ∼ 6th leverage function. They were compared based on their cumulative log marginal likelihood with
a learning period of two years and eight years of data. The model with the highest cumulative log marginal
likelihood was selected as the optimal model.

Figure 1(a) shows the number of optimal orders. As seen in figure 1(a), the 2nd order leverage function is
selected by the most. Orders of above two comprise 75% of all stocks, strongly suggesting that the leverage is
in fact nonlinear. 2th leverage function is selected by the most stocks in all and more than 4th leverage functions
are much less than 1 ∼ 3rd leverage function. We can see that, most stocks are classified in 1st ∼ 3rd leverage
function. Figure 1(b),3 are the number of optimal orders by country and sector. In figure 1(b), we see that 2nd
order leverage function is selected by the most stocks in both countries. There is an apparent difference between
the number of orders selected between Japan and the U.S.A. It is obvious that 1st order leverage functions are
supported proportionally more in Japanese stocks then American.

1Data was collected from ’Bloomberg’.
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We further our analysis by examining the sectors as seen in figure 3. Energy is the only sector which supports
1st order leverage function. Except for Energy, 2nd order leverage function is the most selected order. Focusing
on 1st ∼ 3rd leverage function’s number, four sectors (Consumer Discretionary, Financials, Materials, Utilities)
are the type of that 1st leverage function is more than 3rd leverage function. On the other hand, three sectors
(Consumer Staples, Health Care, Communications) are the type of that 3rd leverage function is more than 1st
leverage function. Other sector (Industrials, Technology) are the type of that the number of 1st leverage function
and 3rd leverage function is almost the same. Sectors of the first type can be said to that the rate of increase
depends on past observation noise is smaller than sectors of the second type. The difference among sectors can
be thought as each sector’s volatility property. Although each sector seems to have some characteristic, there is
no clear pattern between each sector.

Table 1 shows how many stocks have a positive or negative sign on the first order. We see a good number
of stocks have a positive sign, suggesting that there is a positive correlation between asset returns and volatility,
which is very counter intuitive. Figure 2, for example, describe the 1 ∼ 3rd and 4 ∼ 6th order leverage function
of U.S and Japan’s highest order. This shows the complexity of the leverage function never shown before. While
1st order function increases monotonically as the observation noise decreases, most other leverage functions
have a nonlinear relationship. Instead of the leverage effect, these leverage functions, except for the 1st order,
show an effect which decreases volatility when observation noise increases. Though the tails of higher order
leverage functions are unstable, it is stable between credible interval of the observation noise.

4.2 Further Analysis
From the results, we can read off some patterns. However, the effects of country and sector is unclear without
further inspection. For this we employ a ordered probit model to analyze the effects such as

y∗i = constant +βxi +ui, ui ∼ N (0,1) (4.1)

yi =



1 (µ0 ≤ y∗i < µ1),
2 (µ1 ≤ y∗i < µ2),
3 (µ2 ≤ y∗i < µ3),
4 (µ3 ≤ y∗i < µ4),
5 (µ4 ≤ y∗i < µ5),
6 (µ5 ≤ y∗i < µ6),

x′
i = [xi,1, ...,xi,12]

β = [β1, ...,β12]

where y∗i is a latent continuous variable which can takes one of six order categories yi classified by bins
µ0 ∼ µ5 where µ0 = 0 and µ6 = ∞. xi is factor loading vector and β is factor vector which are defined below.

xi,1 : Country ( if yi is Japanese stock, xi,1 = 1. Else xi,1 = 0. )
xi,2 ∼ xi,10 : Sector ( if yi is sector k, xi,k−1 = 1. )

xi,11 : Volatility
xi,12 : Trade Volumes

The finance sector has been omitted due to identification so the results are relative to the finance sector.
Volatility is the average volatility of the stock and Trade Volume is the average number of trade volume for the
stock during that period. In general, the regression model is estimated by minimizing the likelihood. For each
i, the likelihood is

6



Pr(yi = j|β ,µk:k=1∼5) = Pr(µ j−1 < y∗i ≤ µ j)

= Pr(µ j−1 −βxi < y∗i −βxi ≤ µ j −βxi)

= Φ(µ j −βxi)−Φ(µ j−1 −βxi) (4.2)

where Pr(·) is probability, Φ(a) is the probability density function of a normal distribution at point a. For
our analysis, following James and Siddhartha (1993), we use Gibbs sampling to estimate the posterior. The
posterior of y∗i given β,µk:k=1∼5,yi is

y∗i |β,µk:k=1∼5,yi ∼ T N[µ j−1,µ j)(βxi,1) (4.3)

where T N[a,b)(µ,σ2) is a normal distribution with mean µ and variance σ2 which is truncated at the left by a
and right by b. Then the posterior of β given y∗i ,µk:k=1∼5,yi is

β|µk:k=1∼5,yi,y∗i ∼ N ((x
′
ixi)

−1x
′
y∗i ,(x

′
ixi)

−1) (4.4)

and the posterior of µk:k=1∼5 given y∗i ,yi,β is

µk:k=1∼5|β,yi,y∗i ∼U [ak,bk] (4.5)

where

ak = max
{

αk−1,max
i:yi=k

y∗i

}
, bk = max

{
αk+1, min

i:yi=k+1
y∗i

}
.

For the initial condition of β , we used the MLE of β , and estimated the parameters’ distribution via Gibbs
sampler from conditional posterior (4.3), (4.4), and (4.5). The results of the ordered probit model is shown in
figure 4 and table 2. Figure 4 is the histogram of each parameter β1 ∼ β12 and α . Table 2 shows posterior means
and 95% credible interval ( CI ) of each parameter. From this we can see that country is the only significant
variable. The results of gibbs sampler estimation of ordered probit regression model are shown in figure 4 and
table 2. Figure 4 is the histogram of each parameter β1 ∼ β12 and constant. Table 2 shows posterior means and
95% credible intarval ( CI ) of each parameter. With Country, the results show that there is a bias on the leverage
function between Japanese and American. In this case, figure 4 shows American stocks to have a positive effect
on the leverage function order. Regarding Sector, we can see that a few sectors, such as Technology, Health
Care, Consumer Staples, have a possitive effect on the order. Figure 4, also implies that volatility has a slight
negative effect on the leverage function so the order of leverage function slightly decrease when the volatility
increase. However, its posterior mean is about zero so the effect would be trivial. Moreover, the liquidity
factor’s distribution seems have heavy tail and the posterior mean is almost zero so it can be said that liquidity
does not have any effects on the leverage function.

5 CONCLUSION
In specific, 2nd order leverage function is most supported in most and implies that simple linear leverage effect
is inadequate. Moreover, through ordered probit regression, we find that the leverage order is effected by
the country, market, and sector. In particlar, we find that country is the most effective factor determining the
leverage order. We found that American stocks support higher order leverage functions than Japanese stocks
and especially stocks which are components of NASDAQ100 have higher leverage functions. As mentioned in
section 4, we believe this is because NASDAQ100 is a market for new companies and sectors. When the results
are compared by sector, the technology sector tends to suppprt higher order leverage than any other sector.
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Looking at the difference between S&P500 and Nikkei225, we see that the proportion of 3rd order leverage
function is higher in the US compared to Japanese. From those differences, we can infer that the leverage effect
is more complex in the US than Japan. With regards to sector, we find that the energy sector to have lower order
leverage and the technology sector to have higher order leverage. Through these results we find strong evidence
that the leverage effect does exist in individual stocks, but in very complex structures that can be overlooked
using simple models.
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Table 1: Sign of the highest order parameter (positive or negative)
Order of Nikkei225 S&P500 NASDAQ100
Leverage Positive Negative Positive Negative Positive Negative

1 24 47 3 93 0 4
2 18 67 3 177 0 36
3 6 18 62 27 10 7
4 4 4 8 22 0 8
5 1 5 6 8 1 1
6 1 3 5 3 1 0
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Table 2: Posterior Mean & 95% Creadible Interval.
Parameter constant Country Volatility Liquidity

Posterior mean 0.176 0.318 -0.040 -1.894
CI [-0.292 0.644] [0.107 0.532] [-0.237 0.157] [-17.341 13.547]

Sector
Parameter Health Care Industrials Technology Materials

Posterior mean 0.205 -0.059 0.253 0.044
CI [-0.135 0.544] [-0.380 0.267] [-0.027 0.535] [-0.284 0.377]

Sector
Parameter Energy Communications Utilities Consumer Discretionry

Posterior mean -0.219 -0.182 0.015 -0.016
CI [-0.648 0.207] [-0.980 0.619] [-0.363 0.399] [-0.320 0.286]

Sector
Parameter Consumer Staples

Parameter mean 0.159
CI [-0.187 0.503]
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