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Abstract

Testing for Granger causality with mixed frequency data often involves many parametric

restrictions relative to sample size, especially when there is a large wedge between sampling

frequencies (e.g. weekly and quarterly data). In such a case the trilogy test statistics may

not be well approximated by their asymptotic distribution. A bootstrap method can be

employed to improve empirical size, but this generally results in a loss of power. This

paper presents simple and remarkably powerful Granger causality tests applicable to any

mixed frequency sampling data setting. Our tests are based on a simple dimension reduction

technique for regression models. The procedure involves multiple parsimonious regression

models where each model regresses a low frequency variable onto only one individual lag or

lead of a high frequency variable. The lag or lead slope parameter is necessarily zero under

the null hypothesis of non-causality. Our test is then based on a max test statistic that

selects the largest squared estimator among all parsimonious regression models. Parsimony

ensures sharper estimates and hence improved power in small samples. Inference requires

simple simulation procedures because the test statistic has a non-standard limit distribution.

We show via Monte Carlo simulations that the max test is more powerful than existing

mixed frequency Granger causality tests in small samples. An empirical application examines

Granger causality between weekly interest rate spread and quarterly economic growth in the

U.S.
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1 Introduction

Time series are often sampled at different frequencies, and it is well known that temporal ag-

gregation adversely affects Granger causality. One of the most popular Granger causality tests

is a Wald statistic based on multi-step ahead vector autoregression (VAR). Since standard VAR

models are designed for single-frequency data, these tests often suffer from the adverse effect

of temporal aggregation. In order to alleviate this problem, Ghysels, Hill, and Motegi (2013)

develop a set of Granger causality tests that explicitly take advantage of data sampled at mixed

frequencies. They accomplish this by extending Dufour, Pelletier, and Renault’s (2006) VAR-

based causality test using Ghysels’ (2014) mixed frequency vector autoregression (MF-VAR).

Although these tests avoid the undesirable effects of temporal aggregation, their applicability

is limited because parameter proliferation in MF-VAR adversely affects the power of the tests.

Indeed, if we let m be the ratio of sampling frequencies (e.g. m = 3 for monthly versus quarterly

data), then for bivariate cases the MF-VAR is of dimension m + 1. Parameter proliferation

occurs when m is large, and becomes worse as the VAR lag length increases. In these cases,

Ghysels, Hill, and Motegi’s (2013) Wald test exhibits size distortions, while a bootstrapped Wald

test results in correct size but low power.

The present paper proposes new mixed frequency Granger causality tests that have several

advantages: (i) they are regression-based and simple to implement, and (ii) they apply to a

large m for example a week vs. quarter mixture. We postulate multiple parsimonious regression

models where the jth model regresses a low frequency variable xL onto lags of xL and only

the jth lag or lead of a high frequency variable xH . Our test statistic is the maximum among

squared estimators scaled and weighted properly. Although the max test statistic follows a

non-standard asymptotic distribution under the null hypothesis of non-causality, a simulated

p-value is readily available through an arbitrary number of draws from the null distribution.

The max test is therefore straightforward to implement in practice. We prove that the max test

is consistent for any form of causality from xH to xL. (Consistency for causality from xL to xH

remains as an open question.)

In our Monte Carlo simulations, we compare finite sample properties of the max test based

on mixed frequency [MF] data, a Wald test based on MF data, a max test based on low frequency

[LF] data, and a Wald test based on LF data. We show that MF tests are more robust against

complex (but realistic) causal patterns than LF tests. Further, the MF max test is more powerful

than the MF Wald test in most cases due to the greater parsimony of the former.

The full version of the paper has a substantial amount of results omitted here. First, the

short version discusses causality from xH to xL only, while the full version discusses the opposite

direction as well. The latter exploits Sims’ (1972) technique that regresses xL onto leads of xH .

Second, the full paper conducts local power analysis. Third, here we report only a small part

of the entire simulation results. Fourth, the full version presents complete proofs of theorems.

Finally, the full paper discusses a wide range of potential applications of the max test.

This paper is organized as follows. Section 2 presents the max test statistic and derives its
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asymptotic properties. Section 3 runs Monte Carlo simulations, Section 4 presents an empirical

application, and Section 5 concludes the paper. Tables and figures are collected at the end.

2 Max Test

This paper focuses on a bivariate case with a high frequency variable xH and a low frequency

variable xL. We denote by m the number of high frequency time periods for each low frequency

time period τL. We assume throughout that m is fixed (e.g. m = 3 months per quarter). In low

frequency time period τL, we observe m high frequency realizations {xH(τL, 1), xH(τL, 2), . . . ,

xH(τL,m)} and only one low frequency realization xL(τL). xH(τL, 1) is the first high frequency

observation of xH in time τL, xH(τL, 2) is the second, and xH(τL,m) is the m-th.

The true data generating process (DGP) is assumed to be:

xL(τL) =

p∑
k=1

akxL(τL − k) +

pm∑
j=1

bjxH(τL − 1,m+ 1− j) + ϵL(τL), (1)

where {ϵL(τL)} is a martingale difference sequence with variance σ2
L. The index j ∈ {1, . . . , pm}

is in high frequency terms, and the second argument m + 1 − j of xH(τL − 1,m + 1 − j) can

be less than 1 since j > m occurs when p > 1. It can be understood, without any confusion,

that xH(τL − i, j) = xH(τL, j − im) for j = 1, . . . ,m and i ≥ 0 (e.g. xH(τL, 0) = xH(τL − 1,m),

xH(τL,−1) = xH(τL − 1,m− 1), xH(τL,m+ 1) = xH(τL + 1, 1), etc.).

Based on the classic theory of Dufour and Renault (1998) and the mixed frequency extension

made by Ghysels, Hill, and Motegi (2013), we know that xH does not Granger cause xL given

the mixed frequency information set if and only if b ≡ [b1, . . . , bpm]′ = 0pm×1. In order to test

for non-causality H0 : b = 0pm×1, we want a test statistic that obtains asymptotic power of one

against any deviation from non-causality, achieves high power in finite samples, and does not

produce size distortions in small samples when pm is large.

Before presenting the new test, it is helpful to review the existing mixed frequency Granger

causality test proposed by Ghysels, Hill, and Motegi (2013). They work with what we call a

näıve regression model that regresses xL onto q low frequency lags and h high frequency lags of

xH :

xL(τL) =

q∑
k=1

αkxL(τL − k) +
h∑

j=1

βjxH(τL − 1,m+ 1− j) + uL(τL). (2)

Ghysels, Hill, and Motegi (2013) estimate the parameters in (2) by least squares and then test

H0 : β1 = · · · = βh = 0 via a Wald test. Model (2) contains DGP (1) as a special case when

q ≥ p and h ≥ pm, hence the Wald test is trivially consistent if q ≥ p and h ≥ pm.

A potential problem here is that pm, the true lag order of xH , may be quite large when

m takes a large value (e.g. weekly versus quarterly data). Including sufficiently many high

frequency lags h ≥ pm generally results in size distortions for an asymptotic Wald test when

the sample size TL is small and pm is large. A bootstrap can be employed to eliminate size
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distortions, but this generally results in a loss of power. Of course, we may use a small number

of lags h < pm to ensure the Wald statistic is well characterized by its χ2 limit distribution, but

this results in an inconsistent test when there exists causality involving lags beyond h.

A main contribution of this paper is to resolve this trade-off by combining the following

multiple parsimonious regression models:

xL(τL) =

q∑
k=1

αk,jxL(τL − k) + βjxH(τL − 1,m+ 1− j) + uL,j(τL), j = 1, . . . , h. (3)

Assuming that q ≥ p, each model (3) is correctly specified under the null hypothesis of non-

causality b = 0pm×1. Hence, if there is indeed non-causality, the least squares estimators β̂j
p→

0, hence max1≤j≤h {β̂2
j }

p→ 0. Using this property, we propose a max test statistic:

T̂ ≡ max
1≤j≤h

(√
TLwTL,j β̂j

)2
,

where {wTL,j : j = 1, . . . , h} is a sequence of weighting schemes with limits {wj : j = 1, . . . , h}.
As a standardization we assume

∑h
j=1wTL,j = 1 without loss of generality. When we have no

prior information about the weighting scheme, a simple choice of wTL,j is a flat weight 1/h.

The limit distribution of the max test statistic T̂ under non-causality can be derived as

follows.

Theorem 2.1. Under H0 : b = 0pm×1, we have that T̂ d→ max1≤j≤hN 2
j as TL → ∞, where

N ≡ [N1, . . . ,Nh]
′ is distributed N(0h×1,V ) with positive definite covariance matrix V .

See the full paper for a precise expression of V . The mixed frequency max test statistic T̂ has

a non-standard limit distribution under H0 that can be easily simulated in order to compute

an approximate p-value. We can construct a consistent estimator V̂TL

p→ V from sample (see

the full paper). Draw R samples N (1), . . . ,N (R) independently from N(0h×1, V̂TL
). Compute

artificial test statistics T̂ (r) ≡ max1≤j≤h(N
(r)
j )2. An asymptotic p-value approximation for T̂ is

p̂ = (1/R)
∑R

r=1 I(T̂ (r) > T̂ ), where I(A) is the indicator function that equals one if event A

occurs and zero otherwise.

We show that the max test is consistent (i.e. T̂ p→ ∞ whenever b ̸= 0pm×1). The next

theorem presents an analytical expression of the pseudo-true values β∗
j , which is identically the

probability limits of β̂j .

Theorem 2.2. Consider model (3). The pseudo-true value of βj , denoted by β∗
j , is the last

element of [
E
[
xj(τL − 1)xj(τL − 1)′

]]−1 × E
[
xj(τL − 1)XH(τL − 1)′

]
× b,

where xj(τL − 1) = [xL(τL − 1), . . . , xL(τL − q), xH(τL − 1,m + 1 − j)]′ and XH(τL − 1) =

[xH(τL − 1,m+ 1− 1), . . . , xH(τL − 1,m+ 1− pm)]′.

Theorem 2.2 provides useful insights on the relationship between the underlying coefficient b

and the pseudo-true value β∗ ≡ [β∗
1 , . . . , β

∗
h]

′. First, β∗ = 0h×1 whenever there is non-causality
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(i.e b = 0pm×1), regardless of the relative magnitude of h and pm. Second, as the next theorem

demonstrates, b = 0pm×1 whenever β∗ = 0h×1, provided h ≥ pm.

Theorem 2.3. Assume h ≥ pm, then β∗ = 0h×1 implies b = 0pm×1.

Theorem 2.3, which is one of the main results of this paper, implies the consistency of the

max test. Assume the weight limits wj > 0 for all j = 1, . . . , h so that we have a non-trivial result

under the alternative. Suppose that there exists an arbitrary form of causality (b ̸= 0pm×1),

then Theorem 2.3 implies that at least one of {β∗
1 , . . . , β

∗
h} must be nonzero. Hence, the max

test statistic T̂ = max1≤j≤h(
√
TLwTL,j β̂j)

2 must diverge to ∞.

Theorem 2.4 (Consistency). Assume h ≥ pm and wj > 0 for all j = 1, . . . , h. Then T̂ p→ ∞ if

H1 : b ̸= 0pm×1 is true.

3 Monte Carlo Simulations

We now conduct Monte Carlo simulations in order to compare the finite sample performance of

the MF max test and MF Wald test. We also implement the low frequency [LF] max test and

LF Wald test, which work with aggregated xH , in order to see how temporal aggregation affects

empirical power. The ratio of sampling frequencies is m = 12, approximately a week versus

quarter mixture. The sample size is TL = 80 quarters.

The true DGP is Ghysels’ (2014) MF-VAR(1): X(τL) = A1X(τL−1)+ϵ(τL), whereX(τL) =

[xH(τL, 1), . . . , xH(τL, 12), xL(τL)]
′. Note that the last equation of this system corresponds to

(1). We assume that the autoregressive coefficient of high frequency xH is either d = 0.2

(transitory) or d = 0.8 (persistent). See the full paper for a complete specification.

The lower-left block of A1 corresponds to the key parameter b because they govern Granger

causality from xH to xL. We consider four patterns for b: non-causality b = 012×1; decaying

causality with alternating signs bj = (−1)j−1 × 0.3/j for j = 1, . . . , 12; lagged causality bj =

0.3 × I(j = 12) for j = 1, . . . , 12; and sporadic causality (b3, b7, b10) = (0.2, 0.05,−0.3) and all

other bj = 0.

We fit regression models that in all cases include two low frequency lags of xL (i.e. q = 2). The

number of high frequency lags of xH used in the MF tests is hMF ∈ {4, 8, 12, 24}. The number of

low frequency lags of aggregated xH used in the LF tests is hLF ∈ {1, 2, 3, 4}. Low frequency tests

use flow sampling (xH(τL) = (1/12)
∑12

j=1 xH(τL, j)) and stock sampling (xH(τL) = xH(τL, 12)).

The max test weighting scheme is flat Wh = (1/h) × Ih, and the number of draws from the

limit distributions under H0 is 5,000 for p-value computation. We use Gonçalves and Killian’s

(2004) parametric bootstrap with 499 bootstrap samples in order to better approximate the

small sample Wald statistic distribution. The number of Monte Carlo samples drawn is 5,000

for max tests and 1,000 for bootstrapped Wald tests (due to the added computation time), and

nominal size α is 0.05.
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See Table 1 for the simulation results. Empirical size in both tests is fairly sharp, rang-

ing across cases between 0.037 and 0.065 (Panel A). The max tests has sharp size due to its

parsimonious specification, while the Wald test has sharp size due to the bootstrap.

Based on Panels B-D, we discuss in what sense MF tests are preferred to LF tests. It is

not the case that MF tests always achieve higher power than LF tests. If a causal pattern is

simple enough for LF tests to capture, then LF tests may have higher power than MF tests

due to greater parsimony. See decaying causality with (d, hMF , hLF ) = (0.2, 4, 1) for example

(Panel B.1). The LF max test with stock sampling has power 0.657, while the MF max test has

power 0.482. Similarly, the LF Wald test with stock sampling has power 0.597, while the MF

Wald test has power 0.527. (The LF test with flow sampling has virtually no power because

flow aggregation offsets the positive and negative impacts of lagged xH on xL.)

A clear advantage of MF tests against LF tests emerges when there exist complicated causal

patterns like sporadic causality. See Panel D.1 (d = 0.2) for example. The MF max and MF

Wald tests have power [0.167, 0.442] depending on hMF , while the LF tests have virtually no

power regardless of hLF . This is because the low frequency lags of xH are too coarse to capture

the complex causality from disaggregated xH to xL. Since we do not know what kind of causality

exists in practice, it is a safer strategy to use MF tests instead of LF tests.

We now consider the relative performance of the MF max test and MF Wald test. In a strong

majority of cases across causal patterns b, lag length hMF , and persistence d, the max test has

higher power than the Wald test (20 cases out of 24). In the four exceptions the differences

are negligible, where the greatest spread being 0.482 − 0.527 = −0.045 when there is decaying

causality, d = 0.2, and hMF = 4 (Panel B.1). In the 20 cases where the max test performs better,

the difference in power is often substantial. Under lagged causality with (d, hMF ) = (0.8, 24), for

example, max test power is 0.907 while Wald test power is 0.498 (Panel C.2). Overall, the MF

max test is more powerful than the MF Wald test in finite sample because of the parsimonious

specification of the former.

4 Empirical Application

As an empirical illustration, we study Granger causality from a weekly interest rate spread to

quarterly real GDP growth in the U.S. A decline in the interest rate spread has historically been

regarded as a strong predictor of an immediate recession, but recent events place doubt on its

use for such prediction. We use the year-to-year growth rate of seasonally-adjusted quarterly

real GDP as a business cycle measure. In order to remove potential seasonal effects remaining

after seasonal adjustment, we use annual growth (i.e. 4 quarter log-difference ln(yt)− ln(yt−4)).

The short and long term interests rates used for the term spread are respectively the federal

funds (FF) rate and 10-year Treasury constant maturity rate. We aggregate each daily series

into weekly series by picking the last observation in each week (recall that interest rates are

stock variables). The sample period is January 5, 1962 to December 31, 2013, covering 2,736

weeks or 208 quarters.
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Figure 1 shows the weekly 10-year rate, FF rate, their spread (10Y - FF), and quarterly

GDP growth. The shaded areas represent recession periods defined by the National Bureau of

Economic Research. In the first half of the sample period, a sharp decline of the spread seems

to be immediately followed by a recession. In the second half there appears to be a weaker

association, and a larger time lag between a spread drop and a recession.

The number of weeks contained in each quarter τL is not constant. We simplify the analysis

by forcing a constant m = 12 by taking a sample average at the end of each τL, resulting in

the modified spread {x∗H(τL, j)}12j=1 (see the full paper for details). This modification gives us a

dataset with TL = 208, m = 12, and thus T = mTL = 2, 496 high frequency observations.

In view of our 52-year sample period, we implement a rolling window analysis with a window

width of 80 quarters. The first subsample covers the first quarter of 1962 through the fourth

quarter of 1981 (written as 1962:I-1981:IV), the second one is 1962:II-1982:I, and the last one is

1994:I-2013:IV, equaling 129 subsamples.

The MF max test operates on parsimonious regression models:

xL(τL) = α0,j +

2∑
k=1

αk,jxL(τL − k) + βjx
∗
H(τL − 1, 12 + 1− j) + uL,j(τL). j = 1, . . . , 24,

which includes two quarters of lagged GDP growth (xL) and 24 weeks of lagged interest rate

spread (x∗H). The MF Wald test operates on: xL(τL) = α0 +
∑2

k=1 αkxL(τL − k) +
∑24

j=1

βjx
∗
H(τL − 1, 12 + 1− j) + uL(τL).

The LF max test is based on parsimonious models: xL(τL) = α0,j +
∑2

k=1 αk,jxL(τL− k) +

βjx
∗
H(τL − j) + uL,j(τL) for j = 1, 2, 3. They have two quarters of lagged xL and three quarters

of lagged x∗H . Since the interest rate spread is a stock variable, we let the aggregated high

frequency variable be x∗H(τL) = x∗H(τL, 12). Finally, the LF Wald test is performed on: xL(τL)

= α0 +
∑2

k=1 αkxL(τL − k) +
∑3

j=1 βjx
∗
H(τL − j) + uL(τL).

Wald statistic p-values are computed based on Gonçalves and Killian’s (2004) bootstrap,

with N = 999 replications. Max statistic p-values are computed based on 100,000 draws from

the limit distributions under non-causality.

Figure 2 plots p-values for tests of non-causality over the 129 subsamples. All tests except for

the MF Wald test find significant causality in early periods. The MF max test detects significant

causality prior to 1981:IV-2001:III, the LF max test detects significant causality prior to 1980:III-

2000:II, and the LF Wald test detects significant causality prior to 1974:III-1994:II. The MF max

test has the longest period of significant causality, arguably due to its high power, as shown in

Section 3. These three tests all agree that there is non-causality in recent periods, possibly

reflecting some structural change in the middle of the entire sample.

The MF Wald test, in contrast, suggests that there is significant causality only after subsam-

ple 1990:III-2010:II, which is somewhat counter-intuitive. This result may stem from parameter

proliferation. The MF näıve regression model has many more parameters than any other model.

In view of the intuitive test results, the MF max test seems to be preferred to the MF Wald test

when the ratio of sampling frequencies m is large.
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5 Conclusions

This paper proposes a new mixed frequency Granger causality test that achieves high power

even when the ratio of sampling frequencies is large. This is accomplished by exploiting multiple

parsimonious regression models where the jth model regresses a low frequency variable xL onto

the jth lag or lead of a high frequency variable xH . Our resulting max test statistic then operates

on the largest jth lag or lead estimated parameter. Although the max test statistic follows a

non-standard asymptotic distribution under the null hypothesis of non-causality, a p-value can

be easily computed via a simulation method.

We prove the mixed frequency max test is consistent for Granger causality from xH to xL. We

also show via Monte Carlo simulations that the max test is more powerful than existing mixed

frequency Wald tests in small samples. An empirical application examines Granger causality

between weekly interest rate spread and quarterly economic growth in the U.S. The mixed

frequency max test yields an intuitive result that the interest rate spread causes GDP growth

until about the year 2000, after which causality vanishes, while Wald and low frequency tests

yield mixed results.
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Figure 1: Time Series Plot of U.S. Interest Rates and Real GDP Growth
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This figure plots weekly 10-year Treasury constant maturity rate, weekly effective federal funds rate, their spread 10Y - FF,

and the quarterly real GDP growth from previous year. The sample period covers January 5, 1962 through December 31,

2013. The shaded areas represent recession periods defined by the National Bureau of Economic Research (NBER).

Figure 2: P-values for Tests of Non-Causality from Interest Rate Spread to GDP
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(a) MF Max Test
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(b) MF Wald Test
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(c) LF Max Test
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(d) LF Wald Test

This figure plots rolling window p-values of Granger causality tests. MF tests concern weekly interest rate spread and

quarterly GDP growth, while LF tests concern quarterly interest rate spread and GDP growth. The sample period is

January 5, 1962 through December 31, 2013. The window size is 80-quarters. Any p-value in the shaded area indicates

rejection of non-causality from the interest rate spread to GDP growth at the 5% level for that window.
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