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Abstract: Age-period-cohort decomposition requires an identification assumption
because there is a linear relationship among age, survey period, and birth cohort (age +
cohort = period). This paper proposes new decomposition methods based on factor
models such as principal components model and partial least squares model. Although
factor models have been applied to overcome the problem of many observed variables
with possible co-linearity, they are applied to overcome the perfect co-linearity among
age, period, and cohort dummy variables. Since any unobserved factor in the factor
model is represented as a linear combination of the observed variables, the parameter
estimates for age, period, and cohort effects are automatically obtained after the
application of these factor models. Simulation results suggest that in most cases, the
performance of the proposed method is at least comparable to conventional methods but

it has a model-selection problem.
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1. Introduction
Classified by age and period, repeated cross-section data such as those obtained in a
consumer survey, are compiled and expected to provide useful information using the

following model:
yy=a+4+P+C,+¢, i=12,..1; j=12,..,J; k=12,..K. (D)

Here, « is the constant term; 4,, the effect of the age group; P, the effect of the

ij°

survey period; C,, the effect of the birth cohort; and &, a normal disturbance term with

mean zero and variance o°. In the present paper, this type of data is referred to as
cohort data, and the model (1) is referred to as cohort model. Furthermore, it is assumed
that the range of the age group coincides with the interval of the survey period. Thus, it
can be shown that K=7/+J—-1 and k=7-i+j. Without loss of generality, the

parameters 4,, P,,and C, in (1) are subject to the following constraint.

K

J
4,=3 P, = .C, =0. 2)
Jj=1 k=1

/
i=1

Model (1) with constraint (2) can be rewritten in vector and matrix notations as
y=Xp+e, 3)

where y is IL/x1 wvector, X is IJx[2(/+J)-3] design matrix, [ is
[2(/+J)—-3]x1 vector specified as f=(a,4,,.,4,,,F,..P ,C,,..Cx,), and ¢
is IJx1 vector. Generally, the maximum likelihood procedure is applied to obtain the
estimate of the parameter vector £ in (3), but in the cohort model, the estimates cannot
be uniquely identified because the effect parameters are linearly dependent, for example,
age + cohort = period. Hence, additional information on the parameters is required in

order to completely specify this model.

2. Conventional Methods
2.1 Deaton-Paxson (1994) method
In economics literature, since the empirical work by Deaton and Paxson (1994), it has
been assumed that the period effect is orthogonal to a linear time trend and average zero.
In other words, Deaton and Paxson assume that the period effect is identical to a business
cycle effect and that all trend movements are caused by the age and cohort effects. Thus,

the following identification equations are obtained.
J=2 J=2 J=2 J=2

P =) jP=JY. P, P=(J-DY P - jP. (4)
Jj=1 J=1 j=1 j=1

In the present paper, the identification method based on (4) is called as the DP method.
The DP method has been widely applied to empirical studies (Attanasio 1998;
Jianakoplos and Bernasek 2006; Kalwij and Alessie 2007).
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2.2 Nakamura’s (1982, 1986) Bayesian cohort model
In Nakamura’s (1982, 1986) Bayesian cohort (BC) model, smoothness prior information
is introduced for identification. It is assumed that the parameters of age, period, and

cohort effects change gradually. In other words, the first-order differences in the

successive effect parameters, 4, —4,,,, P,—P,,, and C, —C,,, are close to zero for
i=l.,/-1; j=1.,J-1 and k=1,..,K—-1. Therefore, the following objective
function is obtained.
1 J-1 1 K-1 )
= Z A - A,+1 Z( /+1) —ZZ C, Ck+1 ’> min, %)
O, a1 (7 p j=1 O¢ k=l

where o, o,, and o, are properly chosen constants and are called the
hyperparameters in Bayesian modeling. Assuming that the effect parameters have prior
normal distribution, Nakamura estimates f by the mode of the posterior density
proportional to f (y|ﬂ,0'2)07r(ﬂ|0'j,0',2,,0'é), where f (y|,8,0'2) is the likelihood
function for the overall model fitness, and ﬁ(ﬂ |0§,0§,0§) is the prior distribution
function for the smoothness condition. In order to determine the values of the
hyperparameters, Nakamura adopts the Akaike Bayesian Information Criterion (ABIC),
proposed by Akaike (1980). The ABIC is defined by

ABIC=-2In f(y| f.0%)e 2{p| o%.02.02 )dp + 2., (6)

where % is the number of hyperparameters. In model selection, the model with the
smaller ABIC is selected.

3. Proposed Methods

3.1 Principal components regression

The proposed identification methods are based on factor methods, such as the principal
components (PC) regression and partial least squares (PLS) regression, and they involve
a two-step procedure. In the first step, the factor methods are applied to the data sets of
y and X to obtain the unobserved factors. Next, the estimates S in (3) are
automatically obtained, because any unobserved factor is represented as a linear
combination of the observed components of X. Factor models have been applied to
overcome the problem of many observed variables with possible co-linearity. In the
present study, however, factor models are applied to overcome the identification problem
of the cohort model. Accordingly, I reconsider regression (3) with N =1/ and
M =2(I+J)-3 as follows.

First, the PC regression is considered. The data are normalized to obtain zero mean
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and unit variance before the application of the PC regressions. Hence,

v,=px+¢e,; n=1..,N, (7)
where f=(f---p,), and x, =(x,---x,,). | assume that the co-movements in x,
can be captured by rx1 vector of unobserved factors F,, i.e.,

x =AF +e, @®)
where A isan rxM matrix of parameters, generally called the factor loadings matrix,
that indicates the relation of the individual components in x, to each of the r factors.
In (8), e, is composed of a zero-mean 7(0) vector of disturbance terms. » denotes
the small number of linear combinations of x, that represent the factors and act as the
predictors for y,. In the PC method, given the value of r, the estimates of A and
F are obtained by solving

Liﬁ:(x - AF)* — Min &)

NM Z< 7 7
where A, is an rxl vector of loadings that represent M columns of A =(4,:--4,,).
The solution for (9) can be determined by using the eigenvectors corresponding to the 7
largest eigenvalues of the second moment matrix XX. In the cohort model (3), ,@ can
be obtained after the above PC regression.

Another problem to be resolved is the determination of the value of ». However,
this problem has hitherto not been resolved in a statistically relevant framework. Bai and
Ng (2002) proposed an asymptotic theory for determining the number of factors under
the framework of large cross-sections and large time dimensions. However, their
proposed criteria cannot be applied in the present paper, because normality is not a
reasonable distributional approximation for the data of X (Kolenikov and Angeles 2009).
Since the rank of the matrix X is M —1, M —1 cases are considered for r

(r=12,...,M —1). Similar discussions are applicable to the PLS method.

3.2 Partial least squares

The basic concept of PLS regression is similar to the PC regression in that any factor is
obtained as a linear combination of the original explanatory variables and is adopted as a
regressor. The main difference between the PC and PLS regressions is that the factors in
the PC regression are constructed considering only independent variables, whereas the
PLS factors are obtained considering the relationship between dependent and
independent variables. It is assumed for simplicity that all variables are normalized to
have zero mean and that there are & PLS factors. Helland (1988, 1990) provided the
following simple algorithm.

Stepl: Set u, =y, and v, =x,,i=1,..,M. Set j=1.

in?
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Step2: Obtain the j-th PLS factor as f, =w'v,, where w,(w,--w,),
), i=1..,M.
Step3: Regress u, and v,, i=1..,M, on f,. Denote the residuals of these

in? J

w, = Cov(u,,v

in

regressions by u, and Vv,, respectively.

in?

Step4: If j=k, then stop; else, set u, =u, v, =V

in in?

i=1..,M, and
j=j+1 and go to Step2.
In Step3, the following equation is obtained for j=+k.

Yu = {931“’1 +§£2W2(1_élw1)+"'+(rgkwk(l_élwl)”'(]_ék-lwk—l)}xn +u,, (10

where ¢?i is the parameter obtained by regressing u, on f, and éi is the parameter

vector obtained by regressing v, on f, . As in the PC regression, determining the
value of k& has not been resolved in a statistically relevant framework. Furthermore, the

number of iterations need to obtain the convergence in the above algorithm cannot be
predetermined. Thus, M /4 cases are arbitrarily considered for k (k=12,...,M/4).

4. Simulation Study

4.1 Comparisons among the DP, PC, and PLS methods
The following three data generating processes (DGPs) are considered for each effect.

DGPI1: z, =0,

DGP2: z, =n,

DGP3: z,=z_,+n,

DGP4: z, =2z, -z, ,+n,
where 7, ~iid.N(0,]), /=1.,L. and z  =z,=0. Itis generally difficult to consider
typical DGPs for age, period and cohort effects. Since the seminal work by Nelson and
Plosser (1982), the time series properties of economic variables have been examined in
numerous empirical studies. DGP2 is the simplest process for stationary time series.
DGP3 is the so-called random walk process and is usually adopted for financial time
series such as foreign exchange rates. DGP4 is suitable for modeling stock variables such
as monetary supply. Thus, it is logical to consider that the three DGPs mentioned above
are typical of economic time series. Selecting one DGP from the four alternatives for
each effect produces 64 data types for cohort data. The simulations are performed as
follows. First, I select one DGP from the four alternatives for each effect, and generate
n, artificially. Then, each effect is standardized with zero mean and unit variance. Next,
cohort data are obtained by combining the three effects and adding i.i.d. normal noise

with unit variance. Finally, the three identification methods (DP, PC, and PLS) are
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applied to artificial cohort data. Then, the difference between the estimated parameter
value and the assumed parameter value is calculated for the age, period, and cohort
effects, and the overall root mean square error (RMSE) is obtained by adding the squared
differences for individual effects. This simulation is replicated 100 times with 10 age
groups and 10 periods, and the average RMSE is obtained for each method.

Table 1 presents the simulation results. As mentioned in the previous section,
determining the value of » in the PC regression and the value of k£ in the PLS
regression are open questions. In the case of the PC regression, the following three cases
are considered.

PC1: The PC regression with only the largest eigenvalues,

PCm: The PC regression with M —1 nonzero eigenvalues,

PCs: The PC regression providing the smallest RMSE.
PCm is substantially identical to the method proposed by Yang et al. (2004), Yang (2008)
and Yang et al. (2008). In this simulation study M =36. With regard to the PLS
regression, similar alternatives are considered; however, PLSm indicates the PLS
regression with & =M /4. 1 consider the simulation result for the case wherein all of the
effects are artificially generated from DGPI1, denoted by (1 1 1). The corresponding
average RMSEs are 0.449 (DP), 0.032 (PC1), 0.430 (PCm), 0.032 (PCs), 0.206 (PLS1),
0.246 (PLSm), and 0.206 (PLSs). » =1 for the PCs model and k=1 for the PLSs
model were obtained.

I first consider the simulation results obtained by the DP method. The performances
are very poor when the period effect is generated from DGP3 or DGP4. Considering the
assumption in the DP method, these results are straightforward. Next, I consider the
simulation results obtained by the PC method. The performances of the PCs method are
considerably better than those of the DP method. Furthermore, the number of selected
components in the PCs method ranges from 1 to 36 but is larger than 18 except for two
data types. In most cases, there is no considerable difference in RMSE between the PCm
and PCs methods, and therefore only the PCm method is considered in subsequent
studies. Similar results are obtained for the PLS method, and the performances of the
PLSs method are worse than those of the PCs method. Thus, in the next simulation study,

only the PCm method is considered.

4.2 Comparisons between the PCm and BC methods
The purpose of this simulation is to examine frequency count of selecting the correct
model from eight alternatives: APC, AP, AC, PC, A, P, C, and no effect models.

Considered DGPs are completely the same as those in the previous section. Regarding

5



the BC method, the model fitness of eight alternatives can be uniformly evaluated using
the information criterion, ABIC. In the framework of the PCm method, the following mix
procedure is adopted: the PCm regression is applied to the APC model and the
conventional regression is applied to the other seven models. Furthermore, no unique
criterion can be expected for the PCm method, and the following three alternative
information criteria are adopted: the Akaike information criterion (AIC), the Schwarz
Bayesian information criterion (BIC), and Hannan and Quinn criterion (HQC).

Table 2 present selected results regarding the frequency count of the selected model.
The boldface letter indicates the frequency count of the correct selection. This table
suggests that any method does not always beat the other three methods. However, it can
be concluded that the BC method outperforms the other three methods in most cases.
Table 3 present RMSE for each effect obtained by each method for 40 data types. It is
clearly shown that the BC method outperforms the PCm method except when the true
DGP contains neither age or period or cohort effect. In other words, if the cohort data are
generated from the full model, the performances of the PCm method are better than those
of the BC method. For example, consider the simulation result for the case where the
cohort data are generated from the process (2 4 2). The RMSEs obtained by the PCm
method for age, period, or cohort effects are respectively 0.326, 0.347, and 0.596, and
those obtained by the BC method are respectively 0.791, 0.766, and 1.450.

References
Attanasio, O.P, 1998, Journal of Human Resources 33, 575-609.
Bai, J, Ng, S, 2002, Econometrica 70, 191-221.
Deaton, A, Paxson, C, 1994, Studies in the Economics of Aging: Chicago, 331-357.
Helland, 1.S, 1988, Communications in Statistics: Simulation and computation 17, 581-607.
Helland, I1.S, 1990, Scandinavian Journal of Statistics 17, 97-114.
Jianakoplos, N.A, Bernasek, A, 2006, Southern Economic Journal 72, 981-1001.
Kalwij, A.S, Alessie, R, 2007, Journal of Applied Econometrics 22, 1063-1093.
Kolenikov, S, Angeles, G, 2009, Review of Income and Wealth 55, 126-165.
Nakamura, T, 1982, Proceedings of the Institute of Statistical Mathematics, 29, 77-97 (In Japanese).
Nakamura, T, 1986, Annals of the Institute of Statistical Mathematics, 38B, 353-370.
Nelson, C.R, Plosser, C.1, 1982, Journal of Monetary Economics 10, 139-162.
Yang, Y et al, 2008, American Journal of Sociology 113:1697-1736.
Yang, Y, 2008, Demography 45, 387-416.
Yang, Y et al, 2004, Sociological Methodology 34, 75-110.



Tabk 1. Smmubtbn results regarding RM SE

DGP Principal com ponents regression Partial least squares
Age  Period Cohort bP PC1 PCm PCs r PL1 PLm PLs k
1 1 1 0449 0.032 0430 0032 1 0206 0246  0.206 1
1 1 2 0456 0679 0464 0464 36 0623 0505 @ 0505 10
1 1 3 0.459 0672 0611 0607 35 0661 0619 0619 9
1 1 4 0.456 0665 0686 0617 6 0676 0662 @ 0.648 2
1 2 1 0.666 0471 0438 0295 19 0415 0414  0.386 3
1 2 2 0691 0823 0480 0480 36 0.708 = 0581 = 0581 10
1 2 3 0679 0822 0608 0606 35 0.765 0691 @ 0691 10
1 2 4 0697 0815 0710 0662 19 0.782  0.744  0.732 2
1 3 1 1.018 0461 0446  0.300 19 0391 0425 0391 1
1 3 2 1.100 0824 0496 0480 35 0.715 0589 0587 4
1 3 3 1.098 0815 0609 0609 36 0.761 0678 0678 9
1 3 4 1.070 0806 0686 0662 21 0.769  0.728  0.723 2
1 4 1 1.377 0447 0463 0305 21 0369 0433  0.369 1
1 4 2 1.352 0813 0475 0468 35 0.722 0578 0577 6
1 4 3 1.346 0805 0596 0596 36 0.746 0663  0.663 11
1 4 4 1.343 0804  0.714 0678 19 0.762 0718  0.717 8
2 2 1 0668 0671 0444 @ 0337 25 0561 0577 0553 3
2 2 2 0651 0953 0474 0468 35 0815  0.742  0.742 7
2 2 3 0636 0950 0607 0607 36 0850  0.742  0.742 14
2 2 4 0677 0943 0694 @ 0675 25 0872 0815 0814 6
2 3 1 1.100 0663 0433 0332 26 0550 0551 0536 4
2 3 2 1.075 0951 0483 0483 36 0820  0.719 @ 0.719 6
2 3 3 1.069 0947 0631 0630 35 0855  0.794  0.793 7
2 3 4 1.118 0944 0712 0690 26 0867 = 0829 0828 7
2 4 1 1.344 0656 0467 0350 23 0542 0559 0540 4
2 4 2 1.358 0940 0480 0480 36 0819  0.764 @ 0.764 19
2 4 3 1.347 0936 0588 0588 36 0845  0.748  0.747 7
2 4 4 1400 0934 0702 0677 23 0853 0806 0802 4
3 3 1 1.108 0665 0470 0367 23 0553 0581 0553 1
3 3 2 1.091 0952 0485 0485 36 0826  0.749  0.748 6
3 3 3 1.058 0945 0618 0618 36 0855  0.756 = 0.756 12
3 3 4 1.038 0941 0699 0679 28 0852  0.797  0.797 9
3 4 1 1.365 0655 0451  0.360 25 0530 0564 @ 0530 1
3 4 2 1.392 0944 0484 0484 36 0823  0.789  0.782 4
3 4 3 1.344 0942 0652 0644 35 0846 0813 0812 7
3 4 4 1.366 0933 0695 0674 25 0848  0.797  0.793 4
4 4 1 1.368 0659 0481 0392 23 0523 0584 0523 1
4 4 2 1.370 0941 0504 0495 35 0809  0.776  0.760 4
4 4 3 1.330 0944 0610 0610 36 0831  0.756 = 0.753 4
4 4 4 1404 0932 0730 0714 23 0845 0811 0809 4
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Tabk 2. Smubtobn results regarding model sekctbns

DGP M ethods Frequency count of the selected m odel
Age Period = Cohort APC AP AC PC A P C No
1 1 1 PC-AL 0.02 001 001 0.00 0.04 0.05 0.03 0.84
1 1 1 PC-HQC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
1 1 1 PC-BL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
1 1 1 BC 0.00 001 0.00 0.00 0.05 0.05 001 0.88
1 1 4 PC-AL 0.02 0.19 0.05 0.08 0.00 001 0.65 0.00
1 1 4 PC-HQC 0.00 0.12 0.00 0.01 0.06 0.05 0.61 0.15
1 1 4 PC-BIC 0.00 001 0.00 0.00 0.04 0.02 0.13 080
1 1 4 BC 0.00 0.05 0.08 0.08 0.00 0.00 0.79 0.00
1 2 4 PC-AL 0.14 046 0.00 0.39 0.00 001 0.00 0.00
1 2 4 PC-HQC 0.02 0.54 0.00 0.23 0.00 021 0.00 0.00
1 2 4 PC-BEC 0.00 029 0.00 0.02 0.00 063 0.00 0.06
1 2 4 BC 0.07 0.39 0.00 0.54 0.00 0.00 0.00 0.00
2 2 1 PC-AC 0.11 0.89 0.00 0.00 0.00 0.00 0.00 0.00
2 2 1 PC-HQC 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
2 2 1 PC-BIC 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
2 2 1 BC 0.09 091 0.00 0.00 0.00 0.00 0.00 0.00
2 2 4 PC-AC 0.44 056 0.00 0.00 0.00 0.00 0.00 0.00
2 2 4 PC-HQC 0.21 0.79 0.00 0.00 0.00 0.00 0.00 0.00
2 2 4 PC-BIC 0.03 092 0.00 0.00 0.02 001 0.00 0.02
2 2 4 BC 0.45 0.55 0.00 0.00 0.00 0.00 0.00 0.00
2 3 1 PC-AC 0.07 0.93 0.00 0.00 0.00 0.00 0.00 0.00
2 3 1 PC-HQC 001 0.99 0.00 0.00 0.00 0.00 0.00 0.00
2 3 1 PC-BIC 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 1 BC 0.04 0.96 0.00 0.00 0.00 0.00 0.00 0.00
2 3 4 PC-AT 0.34 064 0.02 0.00 0.00 0.00 0.00 0.00
2 3 4 PC-HQC 0.11 082 001 0.00 0.06 0.00 0.00 0.00
2 3 4 PC-BIC 0.00 0.84 001 0.00 0.13 001 0.00 001
2 3 4 BC 0.43 056 001 0.00 0.00 0.00 0.00 0.00
3 3 3 PC-AT 0.82 0.13 0.02 0.03 0.00 0.00 0.00 0.00
3 3 3 PC-HQC 0.42 041 0.06 0.07 001 0.00 0.03 0.00
3 3 3 PC-BIC 0.11 0.59 0.05 0.04 0.05 0.05 0.04 0.07
3 3 3 BC 0.73 0.16 0.05 0.05 0.00 0.00 0.01 0.00
3 3 4 PC-AT 0.40 0.58 001 0.00 0.00 0.00 001 0.00
3 3 4 PC-HQC 0.20 0.77 0.00 0.00 0.02 0.00 0.00 0.01
3 3 4 PC-BIC 0.05 0.70 0.00 0.00 0.08 0.08 001 0.08
3 3 4 BC 0.45 052 0.00 001 001 0.00 001 0.00
3 4 1 PC-AT 0.06 0.86 0.07 0.01 0.00 0.00 0.00 0.00
3 4 1 PC-HQC 0.00 0.97 0.02 001 0.00 0.00 0.00 0.00
3 4 1 PC-BIC 0.00 0.99 001 0.00 0.00 0.00 0.00 0.00
3 4 1 BC 0.02 091 0.04 0.01 0.00 0.00 0.02 0.00
3 4 4 PC-AL 0.23 0.55 0.17 0.02 0.02 0.00 001 0.00
3 4 4 PC-HQC 0.10 064 0.10 0.01 0.09 001 0.03 0.02
3 4 4 PC-BL 0.02 0.58 0.02 0.00 023 0.05 0.02 0.08
3 4 4 BC 0.35 0.50 0.10 0.03 0.00 0.00 0.02 0.00
4 4 2 PC-AL 0.40 0.00 027 025 0.00 0.00 0.08 0.00
4 4 2 PC-HQC 0.19 0.00 0.35 0.25 0.00 0.00 021 0.00
4 4 2 PC-BL 0.04 001 0.36 0.26 001 0.00 0.32 0.00
4 4 2 BC 0.32 0.00 0.28 027 0.00 0.00 0.13 0.00

Note:The boldface letter indicates the frequency count of the correct selection.



Tabk 3. Simubtbn results regardhg RMSE

DGP PCm BC
Age Period @ Cohort Age Period Cohort Age Period Cohort
1 1 1 0.308 0.305 0530 0.089 0.089 0.085
1 1 2 0.324 0.331 0573 0.086 0077 0502
1 1 3 0416 0427 0.762 0.089 0.094 0.399
1 1 4 0463 0456 0.862 0.186 0.166 0415
1 2 1 0.308 0.305 0.543 0.077 0.304 0.103
1 2 2 0.322 0.334 0600 0.087 0.325 0534
1 2 3 0426 0403 0.760 0.130 0.329 0439
1 2 4 0491 0470 0.889 0.345 0440 0686
1 3 1 0310 0311 0.554 0.075 0.281 0.110
1 3 2 0.327 0.318 0628 0.101 0.304 0557
1 3 3 0418 0409 0.763 0.185 0.339 0518
1 3 4 0474 0470 0.854 0.376 0458 0.741
1 4 1 0321 0317 0577 0.081 0237 0.116
1 4 2 0.327 0.319 0.594 0.332 0402 0.781
1 4 3 0403 0419 0.743 0.268 0.356 0621
1 4 4 0488 0483 0.894 0.337 0434 0.701
2 2 1 0311 0312 0.549 0.299 0.301 0.106
2 2 2 0317 0.335 0591 0.354 0.359 0616
2 2 3 0424 0423 0.754 0420 0428 0668
2 2 4 0460 0475 0871 0522 0532 0.856
2 3 1 0311 0.316 0531 0.296 0272 0.108
2 3 2 0.320 0.337 0604 0474 0482 0875
2 3 3 0416 0439 0.791 0467 0491 0.778
2 3 4 0473 0487 0.892 0525 0523 0879
2 4 1 0.327 0.328 0578 0.360 0.308 0.364
2 4 2 0.326 0.347 0.596 0.791 0.766 1450
2 4 3 0414 0.398 0.731 0.597 0571 1.066
2 4 4 0479 0460 0.883 0619 0.581 1.055
3 3 1 0.331 0.325 0.584 0.284 0.287 0.143
3 3 2 0321 0.343 0606 0.582 0.599 1.108
3 3 3 0421 0440 0.767 0490 0489 0.858
3 3 4 0480 0484 0871 0.541 0537 0903
3 4 1 0315 0.323 0.558 0.341 0.310 0.393
3 4 2 0.341 0.341 0.599 0.743 0.741 1407
3 4 3 0452 0451 0812 0.657 0642 1.134
3 4 4 0467 0.502 0.863 0.582 0.595 1.004
4 4 1 0.340 0.337 0.595 0417 0.391 0597
4 4 2 0.345 0.339 0631 0.767 0.770 1486
4 4 3 0406 0420 0.765 0.644 0656 1.206
4 4 4 0490 0496 0915 0635 0632 1.141




