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Abstract: Age-period-cohort decomposition requires an identification assumption 
because there is a linear relationship among age, survey period, and birth cohort (age + 
cohort = period). This paper proposes new decomposition methods based on factor 
models such as principal components model and partial least squares model. Although 
factor models have been applied to overcome the problem of many observed variables 
with possible co-linearity, they are applied to overcome the perfect co-linearity among 
age, period, and cohort dummy variables. Since any unobserved factor in the factor 
model is represented as a linear combination of the observed variables, the parameter 
estimates for age, period, and cohort effects are automatically obtained after the 
application of these factor models. Simulation results suggest that in most cases, the 
performance of the proposed method is at least comparable to conventional methods but 
it has a model-selection problem. 
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1. Introduction 
Classified by age and period, repeated cross-section data such as those obtained in a 
consumer survey, are compiled and expected to provide useful information using the 
following model: 

,ijkjiij CPAy εα ++++=  .1,2,...,;1,2,...,;1,2,..., KkJjIi ===         (1) 
Here, α  is the constant term; iA , the effect of the age group; jP , the effect of the 
survey period; kC , the effect of the birth cohort; and ijε  a normal disturbance term with 

mean zero and variance .2σ  In the present paper, this type of data is referred to as 
cohort data, and the model (1) is referred to as cohort model. Furthermore, it is assumed 
that the range of the age group coincides with the interval of the survey period. Thus, it 
can be shown that 1−+= JIK  and .jiIk +−=  Without loss of generality, the 
parameters iA , jP , and kC  in (1) are subject to the following constraint. 
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Model (1) with constraint (2) can be rewritten in vector and matrix notations as 
      ,εβ += Xy                                                    (3) 
where y  is 1×IJ  vector, X  is ]3)(2[ −+× JIIJ  design matrix, β  is 

1]3)(2[ ×−+ JI  vector specified as ),,...,,,...,,,...,,( 111111 −−−= KJI CCPPAAαβ  and ε  

is 1×IJ  vector. Generally, the maximum likelihood procedure is applied to obtain the 
estimate of the parameter vector β  in (3), but in the cohort model, the estimates cannot 

be uniquely identified because the effect parameters are linearly dependent, for example, 
age + cohort = period. Hence, additional information on the parameters is required in 
order to completely specify this model. 
 

2. Conventional Methods 
2.1 Deaton-Paxson (1994) method 
In economics literature, since the empirical work by Deaton and Paxson (1994), it has 
been assumed that the period effect is orthogonal to a linear time trend and average zero. 
In other words, Deaton and Paxson assume that the period effect is identical to a business 
cycle effect and that all trend movements are caused by the age and cohort effects. Thus, 
the following identification equations are obtained. 
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In the present paper, the identification method based on (4) is called as the DP method. 
The DP method has been widely applied to empirical studies (Attanasio 1998; 
Jianakoplos and Bernasek 2006; Kalwij and Alessie 2007). 
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2.2 Nakamura’s (1982, 1986) Bayesian cohort model 
In Nakamura’s (1982, 1986) Bayesian cohort (BC) model, smoothness prior information 
is introduced for identification. It is assumed that the parameters of age, period, and 
cohort effects change gradually. In other words, the first-order differences in the 
successive effect parameters, 1+− ii AA , 1+− jj PP , and 1+− kk CC  are close to zero for 

1,...,1 −= Ii ; 1,...,1 −= Jj  and 1,...,1 −= Kk . Therefore, the following objective 

function is obtained. 

   ( ) ( ) ( )∑∑ ∑
−

=
+

−

=

−

=
++ →−+−+−

1

1

2
12

1

1

1

1

2
12

2
12 min111 K

k
kk

C

I

i

J

j
jj

P
ii

A

CCPPAA
σσσ

,           (5) 

where 2
Aσ , 2

Pσ , and 2
Cσ  are properly chosen constants and are called the 

hyperparameters in Bayesian modeling. Assuming that the effect parameters have prior 
normal distribution, Nakamura estimates β  by the mode of the posterior density 
proportional to ( ) ( ),,,|,| 2222

CPAyf σσσβπσβ •  where ( )2,| σβyf  is the likelihood 
function for the overall model fitness, and ( )222 ,,| CPA σσσβπ  is the prior distribution 

function for the smoothness condition. In order to determine the values of the 
hyperparameters, Nakamura adopts the Akaike Bayesian Information Criterion (ABIC), 
proposed by Akaike (1980). The ABIC is defined by 

    ABIC ( ) ( ) hdyf CPA 2,,|,|ln2 2222 +•−= ∫ βσσσβπσβ ,                 (6) 

where h  is the number of hyperparameters. In model selection, the model with the 
smaller ABIC is selected. 
 

3. Proposed Methods 
3.1 Principal components regression 
The proposed identification methods are based on factor methods, such as the principal 
components (PC) regression and partial least squares (PLS) regression, and they involve 
a two-step procedure. In the first step, the factor methods are applied to the data sets of 
y  and X  to obtain the unobserved factors. Next, the estimates β̂  in (3) are 
automatically obtained, because any unobserved factor is represented as a linear 
combination of the observed components of .X  Factor models have been applied to 
overcome the problem of many observed variables with possible co-linearity. In the 
present study, however, factor models are applied to overcome the identification problem 
of the cohort model. Accordingly, I reconsider regression (3) with IJN =  and 

3)(2 −+= JIM  as follows. 

First, the PC regression is considered. The data are normalized to obtain zero mean 
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and unit variance before the application of the PC regressions. Hence, 
;nnn xy εβ +′=  ,,...,1 Nn =                                    (7) 

where ,)( 1 ′= Mβββ L  and .)( 1 ′= Mnnn xxx L  I assume that the co-movements in nx  
can be captured by 1×r  vector of unobserved factors ,nF  i.e., 

,nnn eFx +Λ′=                                               (8) 

where Λ  is an Mr×  matrix of parameters, generally called the factor loadings matrix, 
that indicates the relation of the individual components in nx  to each of the r  factors. 
In (8), ne  is composed of a zero-mean )0(I  vector of disturbance terms. r  denotes 
the small number of linear combinations of nx  that represent the factors and act as the 
predictors for .ny  In the PC method, given the value of ,r  the estimates of Λ  and 

nF  are obtained by solving 
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where iλ  is an 1×r  vector of loadings that represent M  columns of ).( 1 Mλλ L=Λ  

The solution for (9) can be determined by using the eigenvectors corresponding to the r  
largest eigenvalues of the second moment matrix .XX ′  In the cohort model (3), β̂  can 
be obtained after the above PC regression. 
    Another problem to be resolved is the determination of the value of .r  However, 
this problem has hitherto not been resolved in a statistically relevant framework. Bai and 
Ng (2002) proposed an asymptotic theory for determining the number of factors under 
the framework of large cross-sections and large time dimensions. However, their 
proposed criteria cannot be applied in the present paper, because normality is not a 
reasonable distributional approximation for the data of X (Kolenikov and Angeles 2009). 
Since the rank of the matrix X  is ,1−M  1−M  cases are considered for r  
( 1,...,2,1 −= Mr ). Similar discussions are applicable to the PLS method. 

 
3.2 Partial least squares 
The basic concept of PLS regression is similar to the PC regression in that any factor is 
obtained as a linear combination of the original explanatory variables and is adopted as a 
regressor. The main difference between the PC and PLS regressions is that the factors in 
the PC regression are constructed considering only independent variables, whereas the 
PLS factors are obtained considering the relationship between dependent and 
independent variables. It is assumed for simplicity that all variables are normalized to 
have zero mean and that there are k  PLS factors. Helland (1988, 1990) provided the 
following simple algorithm.  
       Step1: Set nn yu =  and ,inin xv = .,...,1 Mi =  Set .1=j  
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       Step2: Obtain the j-th PLS factor as ,njjn vwf ′=  where ,)( 1 ′Mjjj www L  
),,( innij vuCovw = .,...,1 Mi =  

       Step3: Regress nu  and ,inv  ,,...,1 Mi =  on .jnf  Denote the residuals of these 
regressions by nu~  and ,~

inv  respectively.  
Step4: If ,kj =  then stop; else, set ,~

nn uu =  ,~
inin vv =  ,,...,1 Mi =  and 

1+= jj  and go to Step2. 
In Step3, the following equation is obtained for kj = . 

,~)}ˆ()ˆ(ˆ)ˆ(ˆˆ{ 1111112211 nnkkkkn uxwIwIwwIwwy +−−++−+= −−θθφθφφ LL   (10) 

where jφ̂  is the parameter obtained by regressing nu  on jnf  and jθ̂  is the parameter 

vector obtained by regressing inv  on jnf . As in the PC regression, determining the 

value of k  has not been resolved in a statistically relevant framework. Furthermore, the 
number of iterations need to obtain the convergence in the above algorithm cannot be 
predetermined. Thus, 4M  cases are arbitrarily considered for k  ( 4,...,2,1 Mk = ). 

 
4. Simulation Study 

4.1 Comparisons among the DP, PC, and PLS methods 
The following three data generating processes (DGPs) are considered for each effect. 

DGP1: ,0=lz  
DGP2: ,llz η=   
DGP3: ,1 lll zz η+= −   
DGP4: ,2 21 llll zzz η+−= −−  

where ),1,0(...~ Ndiilη  .,..,1 Ll =  and .001 ==− zz  It is generally difficult to consider 

typical DGPs for age, period and cohort effects. Since the seminal work by Nelson and 
Plosser (1982), the time series properties of economic variables have been examined in 
numerous empirical studies. DGP2 is the simplest process for stationary time series. 
DGP3 is the so-called random walk process and is usually adopted for financial time 
series such as foreign exchange rates. DGP4 is suitable for modeling stock variables such 
as monetary supply. Thus, it is logical to consider that the three DGPs mentioned above 
are typical of economic time series. Selecting one DGP from the four alternatives for 
each effect produces 64 data types for cohort data. The simulations are performed as 
follows. First, I select one DGP from the four alternatives for each effect, and generate 

lη  artificially. Then, each effect is standardized with zero mean and unit variance. Next, 

cohort data are obtained by combining the three effects and adding i.i.d. normal noise 
with unit variance. Finally, the three identification methods (DP, PC, and PLS) are 
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applied to artificial cohort data. Then, the difference between the estimated parameter 
value and the assumed parameter value is calculated for the age, period, and cohort 
effects, and the overall root mean square error (RMSE) is obtained by adding the squared 
differences for individual effects. This simulation is replicated 100 times with 10 age 
groups and 10 periods, and the average RMSE is obtained for each method. 
    Table 1 presents the simulation results. As mentioned in the previous section, 
determining the value of r  in the PC regression and the value of k  in the PLS 
regression are open questions. In the case of the PC regression, the following three cases 
are considered. 
      PC1: The PC regression with only the largest eigenvalues, 
      PCm: The PC regression with 1−M  nonzero eigenvalues, 
      PCs: The PC regression providing the smallest RMSE. 
PCm is substantially identical to the method proposed by Yang et al. (2004), Yang (2008) 
and Yang et al. (2008). In this simulation study .36=M  With regard to the PLS 
regression, similar alternatives are considered; however, PLSm indicates the PLS 
regression with .4/Mk =  I consider the simulation result for the case wherein all of the 
effects are artificially generated from DGP1, denoted by (1 1 1). The corresponding 
average RMSEs are 0.449 (DP), 0.032 (PC1), 0.430 (PCm), 0.032 (PCs), 0.206 (PLS1), 
0.246 (PLSm), and 0.206 (PLSs). 1=r  for the PCs model and 1=k  for the PLSs 
model were obtained. 

I first consider the simulation results obtained by the DP method. The performances 
are very poor when the period effect is generated from DGP3 or DGP4. Considering the 
assumption in the DP method, these results are straightforward. Next, I consider the 
simulation results obtained by the PC method. The performances of the PCs method are 
considerably better than those of the DP method. Furthermore, the number of selected 
components in the PCs method ranges from 1 to 36 but is larger than 18 except for two 
data types. In most cases, there is no considerable difference in RMSE between the PCm 
and PCs methods, and therefore only the PCm method is considered in subsequent 
studies. Similar results are obtained for the PLS method, and the performances of the 
PLSs method are worse than those of the PCs method. Thus, in the next simulation study, 
only the PCm method is considered. 
 
4.2 Comparisons between the PCm and BC methods 
The purpose of this simulation is to examine frequency count of selecting the correct 
model from eight alternatives: APC, AP, AC, PC, A, P, C, and no effect models. 
Considered DGPs are completely the same as those in the previous section. Regarding 
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the BC method, the model fitness of eight alternatives can be uniformly evaluated using 
the information criterion, ABIC. In the framework of the PCm method, the following mix 
procedure is adopted: the PCm regression is applied to the APC model and the 
conventional regression is applied to the other seven models. Furthermore, no unique 
criterion can be expected for the PCm method, and the following three alternative 
information criteria are adopted: the Akaike information criterion (AIC), the Schwarz 
Bayesian information criterion (BIC), and Hannan and Quinn criterion (HQC). 
    Table 2 present selected results regarding the frequency count of the selected model. 
The boldface letter indicates the frequency count of the correct selection. This table 
suggests that any method does not always beat the other three methods. However, it can 
be concluded that the BC method outperforms the other three methods in most cases. 
Table 3 present RMSE for each effect obtained by each method for 40 data types. It is 
clearly shown that the BC method outperforms the PCm method except when the true 
DGP contains neither age or period or cohort effect. In other words, if the cohort data are 
generated from the full model, the performances of the PCm method are better than those 
of the BC method. For example, consider the simulation result for the case where the 
cohort data are generated from the process (2 4 2). The RMSEs obtained by the PCm 
method for age, period, or cohort effects are respectively 0.326, 0.347, and 0.596, and 
those obtained by the BC method are respectively 0.791, 0.766, and 1.450. 
 

References 
Attanasio, O.P, 1998, Journal of Human Resources 33, 575-609. 

Bai, J, Ng, S, 2002, Econometrica 70, 191-221. 

Deaton, A, Paxson, C, 1994, Studies in the Economics of Aging: Chicago, 331-357. 

Helland, I.S, 1988, Communications in Statistics: Simulation and computation 17, 581-607. 

Helland, I.S, 1990, Scandinavian Journal of Statistics 17, 97-114. 

Jianakoplos, N.A, Bernasek, A, 2006, Southern Economic Journal 72, 981-1001. 

Kalwij, A.S, Alessie, R, 2007, Journal of Applied Econometrics 22, 1063-1093. 

Kolenikov, S, Angeles, G, 2009, Review of Income and Wealth 55, 126-165. 

Nakamura, T, 1982, Proceedings of the Institute of Statistical Mathematics, 29, 77-97 (In Japanese). 

Nakamura, T, 1986, Annals of the Institute of Statistical Mathematics, 38B, 353-370. 

Nelson, C.R, Plosser, C.I, 1982, Journal of Monetary Economics 10, 139-162. 

Yang, Y et al, 2008, American Journal of Sociology 113:1697-1736. 

Yang, Y, 2008, Demography 45, 387-416. 

Yang, Y et al, 2004, Sociological Methodology 34, 75-110. 



 7

A ge Period C ohort PC 1 PC m PC s PL1 PLm PLs

1 1 1 0.449 0.032 0.430 0.032 1 0.206 0.246 0.206 1

1 1 2 0.456 0.679 0.464 0.464 36 0.623 0.505 0.505 10

1 1 3 0.459 0.672 0.611 0.607 35 0.661 0.619 0.619 9

1 1 4 0.456 0.665 0.686 0.617 6 0.676 0.662 0.648 2

1 2 1 0.666 0.471 0.438 0.295 19 0.415 0.414 0.386 3

1 2 2 0.691 0.823 0.480 0.480 36 0.708 0.581 0.581 10

1 2 3 0.679 0.822 0.608 0.606 35 0.765 0.691 0.691 10

1 2 4 0.697 0.815 0.710 0.662 19 0.782 0.744 0.732 2

1 3 1 1.018 0.461 0.446 0.300 19 0.391 0.425 0.391 1

1 3 2 1.100 0.824 0.496 0.480 35 0.715 0.589 0.587 4

1 3 3 1.098 0.815 0.609 0.609 36 0.761 0.678 0.678 9

1 3 4 1.070 0.806 0.686 0.662 21 0.769 0.728 0.723 2

1 4 1 1.377 0.447 0.463 0.305 21 0.369 0.433 0.369 1

1 4 2 1.352 0.813 0.475 0.468 35 0.722 0.578 0.577 6

1 4 3 1.346 0.805 0.596 0.596 36 0.746 0.663 0.663 11

1 4 4 1.343 0.804 0.714 0.678 19 0.762 0.718 0.717 8

2 2 1 0.668 0.671 0.444 0.337 25 0.561 0.577 0.553 3

2 2 2 0.651 0.953 0.474 0.468 35 0.815 0.742 0.742 7

2 2 3 0.636 0.950 0.607 0.607 36 0.850 0.742 0.742 14

2 2 4 0.677 0.943 0.694 0.675 25 0.872 0.815 0.814 6

2 3 1 1.100 0.663 0.433 0.332 26 0.550 0.551 0.536 4

2 3 2 1.075 0.951 0.483 0.483 36 0.820 0.719 0.719 6

2 3 3 1.069 0.947 0.631 0.630 35 0.855 0.794 0.793 7

2 3 4 1.118 0.944 0.712 0.690 26 0.867 0.829 0.828 7

2 4 1 1.344 0.656 0.467 0.350 23 0.542 0.559 0.540 4

2 4 2 1.358 0.940 0.480 0.480 36 0.819 0.764 0.764 19

2 4 3 1.347 0.936 0.588 0.588 36 0.845 0.748 0.747 7

2 4 4 1.400 0.934 0.702 0.677 23 0.853 0.806 0.802 4

3 3 1 1.108 0.665 0.470 0.367 23 0.553 0.581 0.553 1

3 3 2 1.091 0.952 0.485 0.485 36 0.826 0.749 0.748 6

3 3 3 1.058 0.945 0.618 0.618 36 0.855 0.756 0.756 12

3 3 4 1.038 0.941 0.699 0.679 28 0.852 0.797 0.797 9

3 4 1 1.365 0.655 0.451 0.360 25 0.530 0.564 0.530 1

3 4 2 1.392 0.944 0.484 0.484 36 0.823 0.789 0.782 4

3 4 3 1.344 0.942 0.652 0.644 35 0.846 0.813 0.812 7

3 4 4 1.366 0.933 0.695 0.674 25 0.848 0.797 0.793 4

4 4 1 1.368 0.659 0.481 0.392 23 0.523 0.584 0.523 1

4 4 2 1.370 0.941 0.504 0.495 35 0.809 0.776 0.760 4

4 4 3 1.330 0.944 0.610 0.610 36 0.831 0.756 0.753 4

4 4 4 1.404 0.932 0.730 0.714 23 0.845 0.811 0.809 4

D G P Principal com ponents regression Partial least squares
D P

Table 1. Sim ulation results regarding RM SE

r k
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A ge Period C ohort A PC A P A C PC A P C N o

1 1 1 PC -A IC 0.02 0.01 0.01 0.00 0.04 0.05 0.03 0.84

1 1 1 PC -H Q C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

1 1 1 PC -B IC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

1 1 1 B C 0.00 0.01 0.00 0.00 0.05 0.05 0.01 0.88

1 1 4 PC -A IC 0.02 0.19 0.05 0.08 0.00 0.01 0.65 0.00

1 1 4 PC -H Q C 0.00 0.12 0.00 0.01 0.06 0.05 0.61 0.15

1 1 4 PC -B IC 0.00 0.01 0.00 0.00 0.04 0.02 0.13 0.80

1 1 4 B C 0.00 0.05 0.08 0.08 0.00 0.00 0.79 0.00

1 2 4 PC -A IC 0.14 0.46 0.00 0.39 0.00 0.01 0.00 0.00

1 2 4 PC -H Q C 0.02 0.54 0.00 0.23 0.00 0.21 0.00 0.00

1 2 4 PC -B IC 0.00 0.29 0.00 0.02 0.00 0.63 0.00 0.06

1 2 4 B C 0.07 0.39 0.00 0.54 0.00 0.00 0.00 0.00

2 2 1 PC -A IC 0.11 0.89 0.00 0.00 0.00 0.00 0.00 0.00

2 2 1 PC -H Q C 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

2 2 1 PC -B IC 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

2 2 1 B C 0.09 0.91 0.00 0.00 0.00 0.00 0.00 0.00

2 2 4 PC -A IC 0.44 0.56 0.00 0.00 0.00 0.00 0.00 0.00

2 2 4 PC -H Q C 0.21 0.79 0.00 0.00 0.00 0.00 0.00 0.00

2 2 4 PC -B IC 0.03 0.92 0.00 0.00 0.02 0.01 0.00 0.02

2 2 4 B C 0.45 0.55 0.00 0.00 0.00 0.00 0.00 0.00

2 3 1 PC -A IC 0.07 0.93 0.00 0.00 0.00 0.00 0.00 0.00

2 3 1 PC -H Q C 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00

2 3 1 PC -B IC 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

2 3 1 B C 0.04 0.96 0.00 0.00 0.00 0.00 0.00 0.00

2 3 4 PC -A IC 0.34 0.64 0.02 0.00 0.00 0.00 0.00 0.00

2 3 4 PC -H Q C 0.11 0.82 0.01 0.00 0.06 0.00 0.00 0.00

2 3 4 PC -B IC 0.00 0.84 0.01 0.00 0.13 0.01 0.00 0.01

2 3 4 B C 0.43 0.56 0.01 0.00 0.00 0.00 0.00 0.00

3 3 3 PC -A IC 0.82 0.13 0.02 0.03 0.00 0.00 0.00 0.00

3 3 3 PC -H Q C 0.42 0.41 0.06 0.07 0.01 0.00 0.03 0.00

3 3 3 PC -B IC 0.11 0.59 0.05 0.04 0.05 0.05 0.04 0.07

3 3 3 B C 0.73 0.16 0.05 0.05 0.00 0.00 0.01 0.00

3 3 4 PC -A IC 0.40 0.58 0.01 0.00 0.00 0.00 0.01 0.00

3 3 4 PC -H Q C 0.20 0.77 0.00 0.00 0.02 0.00 0.00 0.01

3 3 4 PC -B IC 0.05 0.70 0.00 0.00 0.08 0.08 0.01 0.08

3 3 4 B C 0.45 0.52 0.00 0.01 0.01 0.00 0.01 0.00

3 4 1 PC -A IC 0.06 0.86 0.07 0.01 0.00 0.00 0.00 0.00

3 4 1 PC -H Q C 0.00 0.97 0.02 0.01 0.00 0.00 0.00 0.00

3 4 1 PC -B IC 0.00 0.99 0.01 0.00 0.00 0.00 0.00 0.00

3 4 1 B C 0.02 0.91 0.04 0.01 0.00 0.00 0.02 0.00

3 4 4 PC -A IC 0.23 0.55 0.17 0.02 0.02 0.00 0.01 0.00

3 4 4 PC -H Q C 0.10 0.64 0.10 0.01 0.09 0.01 0.03 0.02

3 4 4 PC -B IC 0.02 0.58 0.02 0.00 0.23 0.05 0.02 0.08

3 4 4 B C 0.35 0.50 0.10 0.03 0.00 0.00 0.02 0.00

4 4 2 PC -A IC 0.40 0.00 0.27 0.25 0.00 0.00 0.08 0.00

4 4 2 PC -H Q C 0.19 0.00 0.35 0.25 0.00 0.00 0.21 0.00

4 4 2 PC -B IC 0.04 0.01 0.36 0.26 0.01 0.00 0.32 0.00

4 4 2 B C 0.32 0.00 0.28 0.27 0.00 0.00 0.13 0.00

Table 2. Sim ulation results regarding m odel selections
D G P

M ethods
Frequency count of the selected m odel

N ote: The boldface letter indicates the frequency count of the correct selection.  
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PC m B C

A ge Period C ohort A ge Period C ohort A ge Period C ohort

1 1 1 0.308 0.305 0.530 0.089 0.089 0.085

1 1 2 0.324 0.331 0.573 0.086 0.077 0.502

1 1 3 0.416 0.427 0.762 0.089 0.094 0.399

1 1 4 0.463 0.456 0.862 0.186 0.166 0.415

1 2 1 0.308 0.305 0.543 0.077 0.304 0.103

1 2 2 0.322 0.334 0.600 0.087 0.325 0.534

1 2 3 0.426 0.403 0.760 0.130 0.329 0.439

1 2 4 0.491 0.470 0.889 0.345 0.440 0.686

1 3 1 0.310 0.311 0.554 0.075 0.281 0.110

1 3 2 0.327 0.318 0.628 0.101 0.304 0.557

1 3 3 0.418 0.409 0.763 0.185 0.339 0.518

1 3 4 0.474 0.470 0.854 0.376 0.458 0.741

1 4 1 0.321 0.317 0.577 0.081 0.237 0.116

1 4 2 0.327 0.319 0.594 0.332 0.402 0.781

1 4 3 0.403 0.419 0.743 0.268 0.356 0.621

1 4 4 0.488 0.483 0.894 0.337 0.434 0.701

2 2 1 0.311 0.312 0.549 0.299 0.301 0.106

2 2 2 0.317 0.335 0.591 0.354 0.359 0.616

2 2 3 0.424 0.423 0.754 0.420 0.428 0.668

2 2 4 0.460 0.475 0.871 0.522 0.532 0.856

2 3 1 0.311 0.316 0.531 0.296 0.272 0.108

2 3 2 0.320 0.337 0.604 0.474 0.482 0.875

2 3 3 0.416 0.439 0.791 0.467 0.491 0.778

2 3 4 0.473 0.487 0.892 0.525 0.523 0.879

2 4 1 0.327 0.328 0.578 0.360 0.308 0.364

2 4 2 0.326 0.347 0.596 0.791 0.766 1.450

2 4 3 0.414 0.398 0.731 0.597 0.571 1.066

2 4 4 0.479 0.460 0.883 0.619 0.581 1.055

3 3 1 0.331 0.325 0.584 0.284 0.287 0.143

3 3 2 0.321 0.343 0.606 0.582 0.599 1.108

3 3 3 0.421 0.440 0.767 0.490 0.489 0.858

3 3 4 0.480 0.484 0.871 0.541 0.537 0.903

3 4 1 0.315 0.323 0.558 0.341 0.310 0.393

3 4 2 0.341 0.341 0.599 0.743 0.741 1.407

3 4 3 0.452 0.451 0.812 0.657 0.642 1.134

3 4 4 0.467 0.502 0.863 0.582 0.595 1.004

4 4 1 0.340 0.337 0.595 0.417 0.391 0.597

4 4 2 0.345 0.339 0.631 0.767 0.770 1.486

4 4 3 0.406 0.420 0.765 0.644 0.656 1.206

4 4 4 0.490 0.496 0.915 0.635 0.632 1.141
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Table 3. Sim ulation results regarding RM SE

 


